Behavioral Research

Table of Contents
1 Description & Theoretical Background

Measurement and Methodological Issues


Type of Behavior as a Moderator of the Intention - Behavior Relation


Other Proximal Antecedents: Implementation Intentions, Behavioral Expectation, and Behavioral Willingness


Behavioral Intention vs. Behavioral Expectation vs. Behavioral Willingness

6 References
7 Measures Appendix
8 Published Examples

Download Full Text (PDF)

Other Constructs



Dispositional Optimism




Illness Representations

  Implementation Intentions
  Intention, Expectation, and Willingness
  Normative Beliefs
  Optimistic Bias
  Perceived Benefits
  Perceived Control
  Perceived Severity
  Perceived Vulnerability
  Self-Reported Behavior
  Social Influence
  Social Support

Intention, Expectation, and Willingness
Frederick X. Gibbons

<< Previous

2 Measurement and Methodological Issues

Recently, Ajzen and Fishbein (2005) discussed factors that may affect the BI / behavior relation and, therefore, should be taken into account when constructing BI measures. First, is aggregation. As with most constructs, indices of BI are most reliable and have the highest predictive validity when they include multiple items. Thus, if the relevant behavior is diet, the criterion and the BI measures should both include different variations of the focal construct (e.g., eat fruits and vegetables, monitor fat intake, avoid sweets). Second is the principle of compatibility, which states that the BI and behavioral measures should "involve exactly the same action, target, context, and time." (p. 26). Thus, a more global or abstract intention—"I intend to drive safely" may not accurately predict a specific behavior, such as wearing seat belts. Another factor is commitment. If the behavior (goal) is important to the individual, his/her expressed intention to do it should relate more strongly to its performance. Commitment and strength of intention are likely to be correlated, however, (Rhodes & Matheson, 2005); so measuring commitment may be redundant with assessment of BI.

Although BI does have very good predictive validity, it is still the case that it doesn't explain 70% to 80% of the variance in health behavior, which raises the methodological question (with theoretical implications) of why? One factor has to do with stability. Conner , Sheeran, Norman, and Armitage (2000) reported that health screening (Study 1) and maintaining a low fat diet (Study 2) were better predicted by intentions when those intentions were relatively stable across a one-year period of time (cf. Cooke & Sheeran, 2004). Related to this issue, another obvious factor is the time lag between measurement of BI and behavior. Although it varies by behavior (and age of the respondent), generally speaking, the BI - behavior relation tends to diminish when the measurement gap between the two exceeds a few months (Sheeran & Orbell, 1998). Another complicating factor is emotion. When asked to report intention to engage in a particular behavior-get a mammogram, for example, or a colonoscopy-one might not consider (or fully appreciate) the level of anxiety over getting tested that, in classic approach-avoidance terms, might inhibit behavior at the time of execution. The same applies to interference that may come from the ingestion of substances at the time of performance (Ajzen & Fishbein, 2005).

<< Previous

Search | Help | Contact Us | Accessibility | Privacy Policy

DCCPSNational Cancer Institute Department of Health and Human Services National Institutes of Health

Health Behavior Constructs: Theory, Measurement, & Research  You can Quit smoking Now!