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a b s t r a c t  

Surgery for the removal of a primary tumor presents an opportunity to eradicate cancer or arrest its pro­
gression, but is also believed to promote the outbreak of pre-existing micrometastases and the initiation 
of new metastases. These deleterious effects of surgery are mediated through various mechanisms, 
including psychological and physiological neuroendocrine and paracrine stress responses elicited by sur­
gery. In this review we (i) describe the many risk factors that arise during the perioperative period, acting 
synergistically to make this short timeframe critical for determining long-term cancer recurrence, (ii) 
present newly identified potent immunocyte populations that can destroy autologous tumor cells that 
were traditionally considered immune-resistant, thus invigorating the notion of immune-surveillance 
against cancer metastasis, (iii) describe in vivo evidence in cancer patients that support a role for anti­
cancer immunity, (iv) indicate neuroendocrine and paracrine mediating mechanisms of stress- and sur­
gery-induced promotion of cancer progression, focusing on the prominent role of catecholamines and 
prostaglandins through their impact on anti-cancer immunity, and through direct effects on the malig­
nant tissue and its surrounding, (v) discuss the impact of different anesthetic approaches and other 
intra-operative procedures on immunity and cancer progression, and (vi) suggest prophylactic measures 
against the immunosuppressive and cancer promoting effects of surgery. 

© 2012 Elsevier Inc. All rights reserved. 

1. The perioperative period as a critical timeframe for 
metastatic progression 

In cancer patients, surgical removal of the primary tumor is 
commonly the first and most important step toward abrogating 
the disease or controlling its progression. While this treatment 
has been utilized in cancer patients for several millennia (starting 
with the ancient Egyptians), its shortcomings have become clearer 
in the last decades. An epidemiological historical study (Demicheli 
et al., 2001) had compared two databases of breast cancer patients, 
showing that while untreated patients exhibited only one peak of 
mortality 3–4 years after diagnosis, operated patients showed an 
additional distinct peak at 7–8 years after surgery, suggesting that 
beside its important beneficial outcomes, surgery may indeed have 
long-term deleterious effects. Given that this notion cannot be 
directly tested in cancer patients, researchers and clinicians have 
to rely on animal models and human correlative or indirect find­
ings in determining the potential role of surgery in metastatic 
progression. 

Starting at mid-20th century, using various animal models, 
researchers have shown that surgery or various stress responses 
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can increase susceptibility to experimental and spontaneous 
metastases of both solid and hematological tumors (Glasner et al., 
2010; Goldfarb et al., 2011; Inbar et al., 2011; Kinsey, 1961). In 
the following years, animal and human studies have proposed 
several underlying mechanisms for this phenomenon. First, in 
humans, it had been repeatedly shown that surgery increases shed­
ding of malignant cells into the blood and lymphatic circulations 
due to mechanical manipulations of the tumor and its vasculature 
(Eschwege et al., 1995; Weitz and Herfarth, 2001; Yamaguchi 
et al., 2000). Second, surgery was shown to increase malignant cell 
proliferation and resistance to apoptosis: for example, post surgical 
sera of cancer patients were reported to stimulate in vitro tumor 
proliferation (Kirman et al., 2002). Third, surgery was found to 
potentiate invasion capacity and motility of free malignant cells 
by inducing the release of matrix metalloproteinases (MMP) 
(Kirman et al., 2006), and by enhancing adhesion-molecule expres­
sion on tumor cells (Reviewed in (van der Bij et al., 2009). Fourth, 
factors related to tumor vascularity were also shown to be affected 
by surgery. Specifically, removal of the primary tumor was reported 
to cause a drop in levels of tumor-related anti-angiogenic factors 
(e.g. angiostatin and endostatin) (O’Reilly et al., 1997, 1994), and 
resulted in increased levels of pro-angiogenic factors (e.g. VEGF) 
(Svendsen et al., 2002), thus ‘‘turning on’’ the angiogenic switch 
in latent preexisting micro-metastases. Finally, tissue damage 
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Fig. 1. A schematic representation of the cumulative kinetics of several perioperative risk factors for the initiation of new metastases and the outbreak of preexisting micro-
metastases in cancer patients (reviewed in Section 1). Each risk factor is represented by a horizontal layer, whose height at different time points along the perioperative 
period signifies its theoretical contribution to the overall risk. ⁄Not indicated are the direct effects of many of the soluble factors, including catecholamines (CA), 
prostaglandins (PG), and opiates/opioids on malignant tissue proliferation, invasion capacity, secretion of VEGF, etc, which are reviewed in Sections 3 & 4. 

caused by surgery, and specifically the subsequent local pro-inflam­
matory and wound-healing responses, were shown to increase 
levels of growth factors (e.g. EGF) (Abramovitch et al., 1999; Pascual 
et al., 2011), endorsing local and distant recurrence. 

Additional aspects inherent to the surgical setting may also play 
a role in metastatic progression. Anesthetic and analgesic agents, 
nociception, and pain, were all shown to markedly suppress sev­
eral aspects of immunity and to promote cancer progression. These 
effects are discussed below at length. Additionally, perioperative 
blood transfusions were causally linked, in animals (Atzil et al., 
2008) and humans, to greater recurrence rates. Specifically, a re­
cent meta-analysis, combining seven randomized controlled trials 
(RCTs) in colorectal cancer patients, had re-confirmed this finding 
and indicated a 42% percent increased risk for recurrence (Amato 
and Pescatori, 2006). Severe hypothermia was shown in animal 
studies to increase susceptibility to metastasis (Ben-Eliyahu 
et al., 1999), although milder hypothermia, which is more common 
in cancer patients, was not associated with cancer recurrence 
(Yucel et al., 2005). 

An often disregarded additional perioperative risk factor for 
cancer recurrence is psychological distress: starting with cancer 
diagnosis, throughout and following surgical and adjuvant treat­
ments, patients experience anxiety, stress, and depression, which 
translate, among others, to activation of the sympathetic nervous 
system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis 
(Seok et al., 2010; Thornton et al., 2010), and the consequent re­
lease of stress hormones. Importantly, psychological stress was re­
ported to down-regulate cellular immune indices, including NK 
and CTL activity, and macrophage motility and phagocytosis 
(Ben-Eliyahu et al., 2000; Li et al., 2005; Palermo-Neto et al., 
2003; Stefanski, 2001). Stress hormones, specifically catechola­
mines, opioids, and glucocorticoids, were repeatedly shown in ani­
mal models to causally promote metastatic progression through 
various mechanisms, immunological and non-immunological 
(Benish et al., 2008; Goldfarb et al., 2009; Inbar et al., 2011; Lee 
et al., 2009; Page et al., 1998; Shahzad et al., 2010; Shakhar and 
Ben-Eliyahu, 1998; Shavit et al., 2004; Thaker et al., 2006). In fact, 
it was shown in animals that even a single exposure to stress or 
stress hormones during a critical period of tumor progression, 
could increase cancer mortality (Inbar et al., 2011). 

Lastly and importantly, it is well acknowledged that surgery 
itself profoundly suppresses cell-mediated immunity (CMI) 
(Shakhar and Ben-Eliyahu, 2003). In patients, surgery and its asso­
ciated neuroendocrine and paracrine responses were shown to in­
crease secretion of immune suppressing hormones (e.g. cortisol), 
decrease numbers and activity of NK, Th1 and CTL cells, and reduce 
the pro-CMI type-1 cytokines (e.g. IL-12 and IFN-c) (Bartal et al., 
2010; Greenfeld et al., 2007). These phenomena commence even 
before surgery, are exacerbated following surgery, and dissipate 
during the few post-operative days or weeks (Faist et al., 1996; 
Greenfeld et al., 2007). The role of CMI, and its recently discovered 
unique lymphocyte populations, in controlling minimal residual 
disease (MRD), is extensively discussed below, providing the ratio­
nale for considering immunosuppression as a significant perioper­
ative risk factor for cancer recurrence. 

Taken together, the risk factors described above, which are all 
common in oncological surgery, occur simultaneously during the 
short perioperative period. Specifically, shedding of malignant 
cells, increased tumor-cell proliferation, excess release of pro-
angiogenic/pro-invasive factors, accelerated spreading of tumor 
cells, abundant release of growth factors, psychological distress, 
and suppression of CMI, may act in synergy to render the patient 
temporarily vulnerable to metastases which could have been con­
trolled otherwise. Therefore, the short perioperative period seems 
to have a non-proportionally high impact on long-term recurrence 
rates (Fig. 1), and thus presents an important and unexplored win­
dow of opportunity to improve prognosis. 

2. Newly-acknowledged tumor-controlling leukocyte popula­
tions, and evidence from cancer patients, invigorate the notion 
of anti-metastatic immune-surveillance 

The ability of the immune system to prevent cancer and control 
metastasis had been originally hypothesized by Paul Erlich more 
than a century ago. Fifty years later, Burnet & Thomas have coined 
the term immune surveillance to describe the ability of the immune 
system, especially CMI, to recognize and destroy transformed cells 
(Burnet, 1967), and numerous studies in animals have supported 
this notion. For example, it was repeatedly shown that depletion 



S34 E. Neeman, S. Ben-Eliyahu / Brain, Behavior, and Immunity 30 (2013) S32–S40 

of NK cells dramatically increased tumor load and metastatic for­
mation of some syngeneic malignancies, while adoptive transfer 
of large granular lymphocytes (NK cells) restored normal tumor 
resistance (Barlozzari et al., 1985, 1983; Shakhar and Ben-Eliyahu, 
1998); in mice, anti-IFN-c treatment, IFN-c deficiency, or RAG-2 
knock-out (preventing T, B, and NK cell-genesis) promoted sponta­
neous tumor development and metastasis (Smyth et al., 2001). 
However, animal tumor models, including those based on human 
malignancies implanted in immune-deficient mice, have been jus­
tifiably criticized (Shakhar and Ben-Eliyahu, 2003) for not compre­
hensively simulating the initiation, immune-editing, and 
progression of human cancer, and for being based selectively on 
immune-sensitive tumor lines. 

However, new evidence based on studies conducted in cancer 
patients, have since emerged, and have clearly indicated the role 
of immune-surveillance in cancer progression. Firstly, numerous 
immune-escape mechanisms revealed in human malignancies 
indicate a profound immune-tumor interaction, and tumor 
destruction and selection by the immune system (reviewed in 
(Kim et al., 2006)). The prevalence of escape mechanisms are great­
er in metastatic foci than in the primary tumor, indicating a higher 
selection pressure during the metastatic process (See (Shakhar and 
Ben-Eliyahu, 2003)). Secondly, in operated cancer patients, an indi­
cation for pre-existing immune-tumor interaction in the form of 
in vitro mixed lymphocyte responses against the excised autolo­
gous tumor, was reported to predict long-term survival rates even 
better than tumor stage and grade (McCoy et al., 2000; Uchida 
et al., 1990). Third, there is an increased frequency of certain malig­
nancies, and a dramatic increase in metastatic progression in im­
mune-compromised patients, including those receiving 
immunosuppressant therapy (Detry et al., 2000; Penn, 1993), pa­
tients with AIDS (Bernstein and Hamilton, 1993), and patients car­
rying anti-lymphocyte antibodies (Decaens et al., 2006). Lastly, and 
despite prior disappointing results, recent advances in immuno­
modulatory therapy also support the role of immunity in tumor 
resistance. For example, the newly FDA-approved CTLA-4 receptor 
blocker, ipilimumab, which enhances T-cell mediated anti-tumor 
immunity, was recently shown to increase survival time of patients 
with metastatic or unresectable melanoma, adding to the known 
benefits of recombinant IL-2 therapy in such patients (Postow 
et al., 2011). Taken together, these findings unequivocally indicate 
interactions of immunocytes with autologous malignancies in can­
cer patients, including cancer cell destruction, and a significant 
control over the metastatic process. 

Still, despite the in vivo clinical evidence described above, for 
many years scientists had failed to directly demonstrate significant 
in vitro immune cytotoxic activity against many autologous tu­
mors, in humans or in animals (Melamed et al., 2005). This appar­
ent contradiction has elicited the hypothesis that yet undiscovered 
unique leukocyte populations that control MRD do exist in vivo. In­
deed, in recent years, modern harvesting, phenotyping, and sorting 
techniques have led to the identification of several new leukocyte 
populations (some also found in humans), which display a unique 
ability to lyse ‘‘immune-resistant’’ autologous tumor cells. These 
populations are described below, and functionally resemble 
in vitro activated lymphocytes (e.g., by various Th1 cytokines), 
which had long been shown to exhibit superior and distinct tu­
mor-lysing capabilities (Rosenberg and Lotze, 1986). 

Marginating pulmonary (MP) leukocytes are defined as white 
blood cells adhering to the endothelium of the lung vasculature. 
These cells have been discovered and studied in rats (Melamed 
et al., 2005), and more recently also in mice (Unpublished data 
from our lab). When compared with circulating leukocytes, MP 
leukocytes naturally exhibit a continuous state of activation. 
Specifically, MP-leukocytes show a twofold higher cytotoxicity 
against xenogeneic tumor lines, and three- to tenfold increased 

cytotoxicity against syngeneic allegedly ‘‘NK-resistant’’ tumor lines 
(Melamed et al., 2010b, 2005; Shakhar et al., 2007). Morphologi­
cally, the proportion of large NK cells in the MP compartment is 
threefold higher than in the blood and spleen (Shakhar et al., 
2007), and the MP cellular composition is characterized by a two­
fold greater proportion of ‘‘innate’’ leukocytes (granulocytes, 
monocytes, and NK cells) (Melamed et al., 2010b). Finally, MP leu­
kocytes exhibit an increased production of IL-1b, IL-6, IL-10 and 
TNF-a in response to immunostimulation by poly I:C, CpG, and 
LPS (Melamed et al., 2010a). Additionally, specific leukocyte sub­
sets within the MP compartment exhibit several characteristics 
of activation, including (i) significantly higher percentage of intra­
cellular IFN-c positive NK cells, (ii) elevated CD11b expression on 
NK cells, granulocytes and monocytes, (iii) elevated CD161 (also 
known as NKR-P1/NK1.1) on monocytes, (iv) twice as many CD80 
positive dendritic cells (DCs), and (v) a significantly lower CD4/ 
CD8 T-cell ratio (Melamed et al., 2010b). 

Notably, the MP-population was reported to be very susceptible 
to immunosuppression following surgery or behavioral stress, or 
following exposure to corticosterone, catecholamines, or prosta­
glandins (Ben-Eliyahu et al., 2010; Benish et al., 2008; Inbar 
et al., 2011; Melamed et al., 2005). However, this population was 
also found to be highly responsive to in vivo immune stimulation 
with poly I:C (Rosenne et al., 2007; Shakhar et al., 2007) or CpG-
C (Goldfarb et al., 2011), which enhanced tumor-lysis by MP leuko­
cytes, and increased lung tumor-resistance. 

Liver pit cells are activated hepatic NK cells with a potential 
wide range of anti-metastatic activity. These cells constitute a rel­
atively rare population (approximately one tenth of Kupffer cells), 
and inhabit the liver sinusoids, adhering to the endothelial cells. 
Pit cells were initially described in rats in 1976 by (Wisse et al., 
1976), and later also in mice (Luo et al., 2000) and humans (Hata 
et al., 1990). However, their potential significance to tumor resis­
tance was only lately acknowledged. Pit cells are considered NK 
cells as they express high levels of NKR-P1, and specific patterns 
of CD2, CD18, and CD54, which are identical to those of circulat­
ing NK cells. Notably, all pit cells are CD8 positive, as opposed to 
only 40% of blood NK cells, and none of the NKT cells (Luo et al., 
2000). Interestingly, and similarly to MP leukocytes, when com­
pared to circulating/spleen NK cells, pit cells demonstrate charac­
teristics of immune activation. These cells exhibit (i) a greater 
number of intra-cellular granules, (ii) a larger size, (iii) an in­
creased NK activity against xenogeneic cells and syngeneic-NK 
resistant tumor cells, (iv) an elevated expression of the NK-activa­
tion markers gp42, CD25, and ANK44 antigen, and (v) high mRNA 
expression levels of perforin, granzymes, INF-c, and tumor necro­
sis factor (TNF)-a (Luo et al., 2001, 2000). Pit cells are not a 
homogenous NK population, and can be divided to high-density 
(HD) and low-density (LD) pit cells, the latter demonstrating an 
even greater NK cytotoxicity and increased levels of activation-re­
lated mRNAs (i.e., perforin, granzymes, INF-c, and TNF-a). It is 
believed that pit cells originate as blood NK cells, and when 
reaching the specific micro-environment of the liver sinusoids dif­
ferentiate into HD, and later into LD pit cells (Vanderkerken et al., 
1993). 

We have recently studied the marginating hepatic (MH)-leuko­
cyte population in its entirety, which contains pit cells and other 
leukocytes. Compared to circulating leukocytes, and much like 
MP leukocytes (Melamed et al., 2010a), MH-leukocytes exhibited 
greater cytotoxicity against xenogeneic and syngeneic tumor cells, 
and also greater levels of mRNA and induced-production of IL-1b, 
IL-6, IL-10, and TNF-a (manuscript in preparation). 

Type 1 NKT cells, also known as invariant or classical NKT cells, 
are a subset of NKT lymphocytes with anti-tumor capabilities, 
extensively studied during the recent years (reviewed in (Hegde 
et al., 2010)). Initially, NKT cells had been defined as T cells 
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expressing NK markers (CD161 and/or CD56), but functionally this 
definition was found to be neither inclusive of all NKTs, nor exclu­
sive of other populations. In recent years NKTs have been re-de­
fined as T cells expressing CD1d, a non-classical MHC-I molecule. 
NKT cells are subdivided into two distinct populations: type1 
NKT cells, which express an invariant Va14 (in mice)- or a Va24 
(in humans)-T cell receptor (TCR), and bind to the a-GalCer glyco­
lipid; and Type2 NKTs (non-classical NKTs) which express a variant 
TCR, and do not bind to a-GalCer. Type 1 NKT cells in humans typ­
ically comprise only 0.01–0.1% of peripheral blood mononuclear 
cells (PBMCs), �1% of liver lymphocytes, and �10% of lymphocytes 
in the omentum (Berzins et al., 2011). In recent years, type 1 NKT 
cells had been shown to secrete IFN-c, promote IL-12 secretion by 
DCs, promote DC maturation, and, similarly to NK cells, to directly 
lyse tumor cells via the perforin, FasL, and/or TRAIL pathways (Sei­
no et al., 2006) following recognition of specific glycolipids (Metel­
itsa et al., 2001, 2003). Interestingly, in numerous studies, defects 
in type 1 NKT cells were causally linked in mice (and associated 
in humans) to the promotion of both solid and hematological can­
cers (Berzins et al., 2011). Several phase-I clinical studies have al­
ready began to utilize a-GalCer injections, or adoptive transfer of 
type 1 NKT cells or of a-GalCer-loaded DCs in cancer patients (Mot­
ohashi and Nakayama, 2009). 

Dendritic Epidermal T cells (DETC) are skin-specific cd T-cells 
which express an invariant canonical Vc3 Vd1 TCR (Macleod and 
Havran, 2011), as well as the NKG2D activating receptor for tumor 
killing (Ebert et al., 2006). DETCs were discovered and mainly stud­
ied in mice, and their presence was also confirmed in humans. 
Their primary role appears to be in maintaining epidermal homeo­
stasis – balancing keratinocyte proliferation and apoptosis. DETCs 
were shown to secrete TNF-a, IFN-c, and CCL1 in response to stim­
ulation, to produce intra-cellular perforin and to exhibit significant 
cytotoxicity against melanoma cells, similarly to skin NK cells and 
in contrast to the more abundant skin ab T cells (Macleod and Hav­
ran, 2011). 

Killer dendritic cells are a bi-phenotypic population of DCs 
found in mice, rats, and humans, which can express typical mark­
ers of DCs (e.g., MHC-II, CD11c) and NK cells (e.g., NK1.1). These 
cells have been identified in the spleen, lymph-nodes, thymus, li­
ver, and lungs. Based on their unique traits, these cells were 
termed NKDCs or, by a different group, interferon-producing killer 
DCs (IKDC) (Larmonier et al., 2010). This population is unique in 
its ability to transform, after lysing tumor cells, from a naïve 
NK-like state (with up-regulated NKG2D, TRAIL, and killing capa­
bilities) to a mature DC-like antigen-presenting cell state (with 
up-regulated MHC-II and co-stimulatory molecules). The in vivo 
significance of NKDCs in controlling tumor progression has rarely 
been studied, though they were recently shown to delay the 
development of the syngeneic B16-melanoma (Larmonier et al., 
2010). 

Taken together, these unique leukocyte populations (and other 
yet undiscovered) with anti-tumor capacities can explain the 
discrepancy between the in vivo evidence for anti-metastatic 
immune-surveillance and the in vitro apparent inability to lyse 
some malignant cells. Importantly, most of these populations 
inhabit strategic locations, specifically lung and liver capillary vas­
culature, fostering tight interactions with all circulating aberrant 
cells, and constituting an important barrier against metastatic dis­
semination. Overall, the discovery of these populations suggests a 
greater role than previously assumed for CMI in controlling circu­
lating malignant cells and other aspects of MRD, even though 
immunity had failed to prevent the development of the primary 
tumor. It is also noteworthy that the removal of a primary tumor 
often terminates malignancy-related immunosuppression (Serafini 
et al., 2006), potentially allowing improved post-operative 
immune activity against MRD. 

3. Catecholamines and prostaglandins are key mediators 
suppressing anti-metastatic immunity and acting directly on 
MRD to promote metastatic progression 

Despite the removal of the primary tumor, and despite the ability 
of CMI to restrict or eliminate MRD, many patients exhibit cancer 
recurrence. Given the above-discussed significance of the perioper­
ative period in determining long-term prognosis, and the marked 
paracrine, endocrine, and immunological perturbations that occur 
during this period, it is our hypothesis that certain surgery-related 
stress responses (i) reduce patient immune resistance to MRD, and 
(ii) directly facilitate MRD capacity to survive and progress, syner­
gistically increasing the risk of cancer recurrence. While similar 
hypotheses have been suggested years ago, specific soluble factors 
and mechanisms have only recently been identified, and include 
catecholamines, prostaglandins, glucocorticoids, various cytokines, 
pro-angiogenic factors, and opioids. Indeed, human and animal 
studies have reported that a variety of physiological and psycholog­
ical stressors perturb immune indices, including cytokine levels and 
their induced production, number and distribution of leukocyte 
subtypes, and cellular and humoral immune functions (Ben-Eliyahu, 
2003; Maes et al., 1998; Segerstrom and Miller, 2004; Stefanski, 
2001; Viswanathan and Dhabhar, 2005). A substantial amount of 
research has focused specifically on catecholamines and prostaglan­
dins, which also mediate the secretion of most of the other pro-
tumor and anti-CMI compounds described above (Giguere and 
Labrie, 1983; Glass and Ogawa, 2006; Rettori et al., 2009). Lastly, 
excess release of catecholamines and prostaglandins can be safely 
targeted pharmacologically in the perioperative context, and we 
propose that such an intervention may constitute a novel and easy 
approach to reduce recurrence rates in oncological patients. 

3.1. Prostaglandins - direct effects on malignant tissue and its micro-
environment 

Ample scientific evidence implicates prostaglandins, especially 
prostaglandin E2 (PGE2), in promoting neoplastic progression. 
COX-2, a member of the cyclo-oxygenase enzyme family that pro­
duces prostaglandins (mostly PGE2), is usually undetectable in 
most healthy human tissues (Reader et al., 2011). However, this 
enzyme is upregulated in many human malignant and pre-malig­
nant tumors (Howe, 2007), especially colorectal and mammary 
carcinomas (Reader et al., 2011). Transgenic mice over-expressing 
the PGE2 receptor, EP1, were reported to be significantly more 
prone to malignant skin tumors. PGE2 administration was shown 
to facilitate macrophage differentiation toward the pro-tumoral 
M2 phenotype (Sica et al., 2006), contributing to tumor angiogen­
esis (Brecht et al., 2011). In colorectal cancer patients, tumor COX-2 
expression levels (but not COX-1) were associated with tumor size, 
stage, depth of invasion, lymph node metastasis, blood vessel inva­
sion, recurrence, and overall survival rates (Soumaoro et al., 2004). 
Blocking the COX-2 pathway in patients or animals was shown to 
facilitate tumor cell apoptosis (Cao et al., 2000; Roche-Nagle et al., 
2004; Sinicrope and Gill, 2004; Zha et al., 2004), to reduce levels of 
pro-angiogenic agents (Jones et al., 1999; Sinicrope and Gill, 2004; 
Wei et al., 2004), to decrease tumor microvascular density (Roche-
Nagle et al., 2004), and to lower neoplasm vascular invasive capac­
ity by reducing local inflammation and vascular permeability (Con­
deelis and Pollard, 2006; Goswami et al., 2005). 

3.2. Catecholamines - direct effects on malignant tissue and its micro-
environment 

The following and additional direct effects of catecholamines are 
comprehensively reviewed elsewhere (Cole and Sood, 2012) (also 
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see in this volume). Shortly, several lines of evidence demonstrate 
that activation of tumor b-adrenoceptors can promote malignant 
progression by facilitating tumor survival, angiogenesis, migration, 
proliferation, and resistance to anoikis (Antoni et al., 2006; Bernabe 
et al., 2011; Sood et al., 2010, 2006; Thaker et al., 2006; Wong et al., 
2011). A pioneering study (Schuller et al., 1999) had shown that the 
tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)­
1-butanone (NNK) promoted murine pulmonary tumor-cell DNA 
synthesis and proliferation by stimulating tumor b1 and b2 adreno­
ceptors. Other studies have shown that norepinephrine enhances 
in vitro production of several metastatic promoting factors, includ­
ing VEGF, MMP2/9, IL-6, and IL-8, by a variety of human tumor lines 
(Bernabe et al., 2011; Sood et al., 2006; Thaker et al., 2006; Wong 
et al., 2011; Yang et al., 2009) – effects that were blocked by the b-
antagonist propranolol (Lutgendorf et al., 2003). In mammary 
tumors, activation of b-adrenoceptors was linked to accelerated 
tumor growth (Antoni et al., 2006), and in a colon carcinoma cell line, 
norepinephrine was found to induce in vitro locomotion in a b2-adre­
noceptor-dependent manner (Masur et al., 2001). Lastly, a blockade 
of beta-adrenergic receptors had induced apoptosis of several hu­
man and animal carcinoma cell lines (Liao et al., 2010; Zhang et al., 
2009). 

3.3. Catecholamines and prostaglandins: effects on anti-tumor CMI 

In addition to their direct effect on malignant tissue and its 
micro-environment, catecholamines and prostaglandins have been 
repeatedly shown to suppress many aspects of CMI in vitro 
(Hellstrand and Hermodsson, 1989; Koren and Leung, 1982), and 
ex vivo (Benish et al., 2008; Inbar et al., 2011; Levi et al., 2011; 
Shakhar and Ben-Eliyahu, 1998). Most lymphocytes express recep­
tors for catecholamines and prostaglandins (Landmann, 1992; 
Uotila, 1996), and the intracellular cascades triggered by these sub­
stances that lead to immunosuppression have been extensively 
studied, and are mainly based on the cAMP-PKA pathway (Masera 
et al., 1989; Torgersen et al., 1997; Whalen and Bankhurst, 1990). 
Our studies in animals clearly indicate that administration of cate­
cholamines (Ben-Eliyahu et al., 2000; Shakhar and Ben-Eliyahu, 
1998) or prostaglandins, at presumably physiological levels, or 
the endogenous excess release of these compounds by stress or 
surgery, suppress NK activity in vivo (Benish et al., 2008; Melamed 
et al., 2005; Yakar et al., 2003). Furthermore, we provided causative 
evidence that this immunosuppression can compromise resistance 
to experimental metastasis (Shakhar and Ben-Eliyahu, 1998; Yakar 
et al., 2003). Last, our findings also support a role for this immuno­
suppression in reducing long-term survival rates in animals under­
going primary tumor excision (Benish et al., 2008; Glasner et al., 
2010; Goldfarb et al., 2011; Inbar et al., 2011; Melamed et al., 
2003). Catecholamines and prostaglandins are also known to shift 
the Th1/Th2 balance toward the anti-CMI Th2 dominance (Elenkov 
and Chrousos, 2002; Kalinski, 2012), and to increase ACTH and 
glucocorticoid levels(Giguere and Labrie, 1983), potentially sup­
pressing several aspect of CMI through these responses (also see 
below). Lastly, specific anti-tumor leukocyte populations (de­
scribed above), including MP-leukocytes (Benish et al., 2008; 
Melamed et al., 2005), DETCs (Martinet et al., 2009), and type 1 
NKTs (Prigione et al., 2009), were all shown to be suppressed by 
b-adrenergic and/or prostanoid stimulation. 

3.4. Synergistic effects of catecholamines and prostaglandins 

In addition to the beneficial effects of blocking either catechol­
amines or prostaglandins on immunity and on resistance to tumor 
progression, recent studies emphasize the synergistic effects of 
blocking both factors. For example, only a combined treatment 
with a b-blocker and a COX-2 inhibitor attenuated the NK 

suppressive effects of surgery (Benish et al., 2008), and in two 
models of spontaneous metastasis only the combination of the 
two blockers, but none alone, improved survival rates following 
the removal of a primary metastasizing tumor (Benish et al., 
2008; Glasner et al., 2010). We ascribe this synergism to the fact 
that both catecholamines and prostaglandins are elevated during 
the perioperative period, and that they can each alone cause 
immunosuppression and/or promote metastasis through non-
immunological mechanisms described above. Indeed, both cate­
cholamines and prostaglandins independently activate the same 
cAMP-PKA intracellular pathways on immune, malignant, and 
other host relevant cells, eventually promoting metastasis. Thus 
the blockade of only one receptor system could be ineffective. 

3.5. Glucocorticoids: impact on immunity and tumor progression 

Traditionally, glucocorticoids were considered as major media­
tors of the deleterious effects of stress on anti-tumor immunity. In­
deed, glucocorticoids are potent in vitro suppressors of many aspects 
of CMI (Ashwell et al., 2000), including NK activity (Cox et al., 1983), 
and pharmacological doses of glucocorticoids in patients often lead 
to immunosuppression (Oehling et al., 1997). Like others before us 
(Tseng et al., 2005), we too observed in vitro and some ex vivo sup­
pressive effects of exogenous and surgery-induced elevated gluco­
corticoid levels on NK activity (Shakhar and Blumenfeld, 2003). 
Nevertheless, our studies in rats have provided evidence that the 
in vivo role of glucocorticoids in the NK-suppressive and tumor-pro­
moting effects of acute stress or surgery is rather limited. Physiolog­
ically relevant doses of corticosterone (3–9 mg/kg in rats) did not 
increase susceptibility to MADB106 metastasis or CRNK-16 leuke­
mia (Inbar et al., 2011; Shakhar and Blumenfeld, 2003), although 
both models indicated significant impacts of other stress hormones 
(Inbar et al., 2011; Shakhar and Ben-Eliyahu, 1998). Correspond­
ingly, interventions that did not markedly affect the HPA-axis re­
sponses almost completely abolished the ex vivo and in vivo effects 
of stress and surgery on NK activity and on tumor resistance (Benish 
et al., 2008; Glasner et al., 2010). Taken together, we suggest that an 
acute in vivo exposure to physiological high levels of glucocorticoids 
in rats is not sufficient to suppress levels of NK activity in vivo, and 
some studies in humans had reached a similar conclusion (Bodner 
et al., 1998). One hypothesis as to the apparent contradiction be­
tween the in vitro and in vivo findings addresses a potential differ­
ence in the effective concentrations of glucocorticoids used in the 
two approaches, and the fact that approximately 95% of glucocorti­
coids are bound in vivo to glucocorticoid binding globulins (CBGs), 
which further decrease their effective in vivo levels (Henley and 
Lightman, 2011). 

On the other hand, it seems that longer in vivo exposures to ele­
vated glucocorticoids can decrease Th1 cytokines, and through this 
mechanism induce a delayed reduction in CMI functioning. For 
example, we recently found that various prolonged stress para­
digms reduced plasma IL-12 levels, beginning 5–10 h after stress 
initiation, and that this reduction was mediated through the re­
lease of adrenal corticosterone and activation of the GR receptors 
(Shaashua et al., 2011). However, it is worthy to note that in vivo 
high levels of catecholamines and prostaglandins can increase glu­
cocorticoid levels (Giguere and Labrie, 1983; Rettori et al., 2009), 
and that their blockade perioperatively was shown to reduce de­
layed surgery-induced elevation in corticosterone levels (i.e., at 
12, but not at 2 h post-operatively) (Glasner et al., 2010). Thus, 
the blockade of prostaglandins and catecholamines may also re­
duce delayed immunosuppressive effects of glucocorticoids that 
are secondary to catecholamine and prostaglandin release. Last, 
employing two models of prolonged stress and comparing the rel­
ative contribution of corticosterone to those of catecholamines and 
prostaglandins in causing in vivo suppression of NK activity, we 
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found that the blockade of corticosterone had a smaller effect than 
the blockade of catecholamines and prostaglandins. When adding 
corticosterone blockade to the two other interventions, no 
improvement was evident (Ben-Eliyahu et al., 2010). Overall, we 
suggest that elevated levels of glucocorticoids are of minor signif­
icance in suppressing NK activity in vivo relative to other responses 
to stress and surgery, and that prophylactic measures should focus 
on catecholamines and prostaglandins, which can also lead to re­
duced glucocorticoid levels, and are more feasible for clinical use 
during the perioperative period. 

4. Anesthesia, analgesia, and pain: impact on immunity and 
tumor progression 

Inherent to almost every surgery is the use of various anesthetic 
and analgesic agents administered through various approaches. It is 
now becoming clear that some common anesthetic and analgesic ap­
proaches are associated with an increase in cancer recurrence rates, 
as was shown regarding colorectal (Gupta et al., 2011), breast 
(Exadaktylos et al., 2006), melanoma (Schlagenhauff et al., 2000), 
ovarian (de Oliveira et al., 2011; Lin et al., 2011), and prostate (Biki 
et al., 2008) cancer. Generally, most of these studies reported that 
the common approach of employing general anesthesia combined 
with an opiate-based analgesia (the ‘‘GA approach’’) was linked to 
a poorer prognosis compared to various approaches which are exclu­
sively based on, or include, regional or local blockade of nerve con­
duction (RA). Interestingly, supporting the clinical significance of 
the perioperative period, is the finding that epidural anesthesia (in 
addition to GA) in ovarian cancer patients was associated with im­
proved recurrence-free survival, but only when administered 
intra-operatively, and not post-operatively (de Oliveira et al., 
2011). Additionally, and as elaborated below, many of the deleteri­
ous effects of various aspects of anesthesia are based on 
mechanisms described above, including neuroendocrine responses, 
immunosuppression, and direct effects on the malignant tissue. 
Notably, a cautionary note is needed - all the above clinical studies 
are retrospective, and in few studies the adjustment for prognostic 
factors had eliminated significant differences between the anes­
thetic approaches (Melchi et al., 1995). In the only prospective study 
that was conducted, no significant differences were detected, but the 
study had a markedly limited statistical power (Myles et al., 2011). 

The differences between the GA and the RA approaches can hint 
at specific factor(s) and mediating mechanisms underlying the al­
leged differences in long-term cancer outcomes. The GA approach 
commonly involves an induction phase (usually with thiopental or 
with propofol), and a maintenance phase utilizing a volatile anes­
thetic (e.g., sevoflurane or halothane), combined with the use of 
analgesics to relieve intra- and post-surgical pain, which are most 
commonly opiates. On the other hand, the RA approach employs 
administration of a local anesthetic (e.g. lidocaine or bupivicaine) 
in specific anatomic regions and in small quantities, to block 
peripheral or spinal nerve conduction (e.g., neuroaxial, paraverte­
bral, or epidural block). This approach efficiently prevents nocicep­
tion and pain, while, unlike the GA approach, also halting 
ascending neural transmission to CNS nuclei that otherwise may 
initiate HPA and sympathetic responses. 

Animal studies had pointed at all factors differentiating between 
the two approaches as potential contributors to the poorer prognosis 
seen in patients subjected to GA. These include the utilization of spe­
cific induction agents, volatile anesthetics, opiate analgesics, and the 
centrally-mediated stress responses to nociception and pain. These 
factors, or the stress responses they elicit, eventually affect tumor 
progression either by impairing anti-tumor immunity, or directly 
by impacting the malignant tissue. For example, in a rat model of 
experimental metastasis, thiopental, ketamine, and halothane were 

all shown to reduce NK cytotoxicity, and to increase susceptibility to 
metastasis, some through activation of b-adrenoceptors (Melamed 
et al., 2003). Additionally, several volatile anesthetics, including iso­
flurane and desflurane, were shown to directly activate hypoxia 
inducible factors (HIFs) in tumor cells, increasing their resistance 
to cell death under hypoxic stress, partly by inducing secretion of 
VEGF and other angiogenic factors (Tavare et al., 2012). Opiate 
administration, and endogenously secreted opioids in response to 
nociception, were shown to facilitate tumor proliferation, promote 
tumor angiogenesis, and enhance tumor blood supply through ni­
tric-oxide (NO) release (Gach et al., 2011; Gupta et al., 2002). Opiates 
were also shown to suppress NK and phagocytic activity, the produc­
tion of antibodies, and the release of pro-CMI cytokines (Vallejo et al., 
2004). Notably, at much lower doses, opiates are known to have cen­
tral beneficial effects, reducing anxiety and pain, and were shown to 
actually attenuate postoperative stress responses and improve resis­
tance to metastasis (Page et al., 2001). Therefore, pain alleviation and 
stress management, which are not based on systemic high-dose opi­
ate administration, may be advantageous. Accordingly, some studies 
point at centrally-mediated mechanisms underlying beneficial ef­
fects of RA. Specifically, in two studies employing animal models 
of experimental metastasis, mice or rats were subjected to laparot­
omy under GA. Adding a spinal block resulted in a diminished dele­
terious effect on the IFN-c/IL-4 ratio (reflecting the Th1/Th2 
balance), on NK activity, and on the numbers of experimental liver 
or lung metastases (Bar-Yosef et al., 2001; Wada et al., 2007). 

Human prospective and retrospective studies concur with the 
above causative findings. For example, several experimental studies 
in humans have recently shown that the GA approach as a whole can 
directly affect the malignant tissue and promote its growth. In two 
studies, breast cancer patients were randomly assigned to undergo 
either GA or RA. Only the GA approach (which includes opiate 
administration) was shown to directly increase serum levels of VEGF 
(Looney et al., 2010), MMP-3, and MMP-9 (Deegan et al., 2010). In an­
other study, sera taken from patients who were randomly allocated 
to undergo GA, rather than RA, promoted the in vitro proliferation of 
a breast cancer cell line (Deegan et al., 2009). Other studies have re­
ported that the use of RA had resulted in a reduced perioperative 
stress response, and spared postoperative immunity (reviewed in 
(Kurosawa and Kato, 2008)). For example, in patients undergoing 
hysterectomy, GA, but not RA, had resulted in a 3-day long lympho­
penia and reduced NK activity, accompanied by an increased gluco­
corticoid and sympathetic responses (Tonnesen and Wahlgreen, 
1988). Most exciting, two retrospective studies in cancer patients re­
ported a marked improvement in survival when regional anesthesia 
was added to GA. Breast and prostate cancer patients that during sur­
gery also received paravertebral or epidural analgesia (respectively), 
had shown a more than twofold higher long-term recurrence-free 
survival (3–5 years postoperatively) (Biki et al., 2008; Exadaktylos 
et al., 2006). These findings most likely reflect a cumulative effect 
of many potential mediating mechanisms, immunological and 
non-immunological, and their significance stems from the impor­
tant clinical outcome of recurrence rates. 

However, despite the extensive evidence suggesting that the 
anesthetic/analgesic approach can influence long term cancer 
recurrence, so far no randomized clinical trial has shown a causa­
tive effect on measures of survival. Thus, RCTs, including ongoing 
studies (e.g., (Sessler et al., 2008)) are required to provide direct 
evidence that the anesthetic/analgesic approach can affect long­
term cancer prognosis. 

5. Conclusions 

The premise that immunosuppression during the perioperative 
period can increase long-term cancer recurrence rates is based on 
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empirical findings in animal studies, and on indirect evidence and 
argumentations based on findings from human studies. Prominent 
among these are (i) the recent identification of new leukocyte pop­
ulations that exhibit uniquely potent cytolytic activity against 
autologous tumor cells that were traditionally considered ‘‘im­
mune-resistant’’, (ii) the accumulation of evidence in cancer pa­
tients indicating in vivo immune control over the progression of 
cancer metastasis, (iii) the notion that the short perioperative per­
iod is markedly influential in determining long-term cancer recur­
rence, given the many risk factors that occur simultaneously and act 
synergistically during this period, including suppression of anti-
metastatic CMI, (iv) the evidence that variations in surgical proce­
dures, including anesthetic approaches and blood transfusion, af­
fect tumor metastasis in animal models and apparently in cancer 
patients, through immunological and non-immunological mecha­
nisms, and (v) the recent identification of neuroendocrine, para­
crine, and cytokine mediators of the immunosuppressive and 
metastasis promoting effects of stress and surgery, of which we be­
lieve that catecholamines and prostaglandins are key players. Given 
that both catecholamines and prostaglandins are abundant during 
the perioperative period, are involved both in immunosuppression 
and in direct facilitation of malignant tissue progression, and can be 
pharmacologically controlled during the perioperative period, we 
believe that their simultaneous blockade presents an unexplored 
opportunity to limit long-term cancer recurrence employing a short 
and safe perioperative intervention during this critical timeframe. 
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