Index

A

α4β2 nAChRs, 166, 168
α7 nAChR receptors, 168
α7 nAChR subunit knockout mice, 159
abstainers (nonsmokers)
 characteristics of, 22
 inclusion versus exclusion of, 222–223, 235, 323
 nicotine patches, 377
abstinence
 in behavioral economics effects, 420
deficits, 350–351
effects of, 405, 408
event-related potential, 429
abstinence-induced craving, 438
effects of, 405
measurements, 403
during smoking cessation, 441
α-bungarotoxin binding, 165, 167
ACE model, 249–250
acetaldehyde (alcohol studies), 86–87
acoustic startle reflex. See startle response
active avoidance, 435
acute stress mimicry of withdrawal symptoms, 448
acute tolerance, 162–163
ADA (Americans with Disabilities Act), 49
Add Health (National Longitudinal Study of Adolescent Health), 197–198, 261, 517
addiction. See also nicotine dependence; substance use
 clinical manifestations of, 79
 as dependence, 77
 DRD2 gene and, 32
 versus habituation, 24
 models of, 293
 versus smoking, 24
 stress and, 36
additive components, 511
adenosine knockout mice, 159
adenosine systems, in nicotine reinforcement, 159–160
ADH1*2 alleles (alcohol studies), 86–87
ADHD. See attention deficit hyperactivity disorder
adipose tissue, nicotine concentrations in, 145
ad libitum (ad lib) self-administration, 415–416, 419
administration, 145–149, 418. See also self-administration
 in drinking water, 148, 172
 intravenous, 146, 156, 410
 oral, 148, 154, 412
adolescent(s)
 alcohol use by, 516
cognitive control, 358, 380
delay discounting choices, 350
depression in, 351–352
event-related potential, 429
extraversion in, 349
first mood effects, 375–376
neuroticism in, 351, 352
nicotine deprivation learning deficits, 436
nicotine response in, 194–195
novelty seeking behavior, 27, 348
P300 amplitude in, 360
physiological changes in, 589
protective factors, 343
research limitations, 367
social influences on, 346–347, 517
transition to adulthood, 195
use of genetic information by, 46–47
adolescent developmental trajectories, 189–235, 592
age of smoking onset, 200–201
empirically identified, 202–214
example of, 223–233
future research directions, 233–234
psychopathology, 191–202, 292–293
statistical models, 214–223
substance use, 295–296 (See also substance-use comorbidity; specific substance)
adolescent nicotine dependence, 191–195
animal models of, 155, 194–195
biological vulnerability for, 100, 193–195, 200–201, 233
future research directions, 233
genetic studies of, 86, 264–266, 342
individual symptoms of, 192
measurement of, 192, 230–231, 264
time and exposure required for, 192–193
withdrawal symptoms, 192
adolescent smoking, 371
antisocial behavior and, 200, 202, 211, 232
environmental influences on, 196–197
ethnic differences in, 213–214, 279
gender differences in, 196, 199, 260, 263–264, 342
gene-environment interactions in, 197–200, 259
genetic research on, 195–200, 259–269
heterogeneity in, 190, 233
as indicator of adult nicotine dependence, 230–231
latency between cigarettes, 371
molecular genetic studies of, 198–199
parental smoking and, 196–197, 200
peer smoking and, 197
prevalence of, 191
twin studies of, 196, 259–262
adolescent smoking initiation, 191
age range in, 261–262
heterogeneity of, 196, 201–202, 233
progression to dependence, 341
genetic studies of, 263–264
rate of acceleration, 201–202
psychosocial factors, 200, 202, 211
risk profile, 211–212, 232
shared environmental factors in, 260–261, 264, 280
adoPTION studies, 196, 279
ADRA1A gene, 42
adulthood, transition to, 195
adult nicotine dependence, adolescent smoking indicators of, 230–231
adult-onset events, 100
adult smoking phenotype, limitations of, 190
advertising
costs of, 21
in movies, 7, 20, 523
novelty seeking as response to, 348
protobacco, 7, 20, 30, 348
smoking index variable and, 30
aerosols, nicotine, 147
affective coping, 112–113
affective response, 373–376
future research directions, 456
physiological measures of, 377–378, 445–446
regulation of, 358, 403, 443–449
affiliation/empathy system, 362
African Americans
adolescent smoking in, 213–214
genotypes linked to dependence, 47
linkage study focused on, 267
age effects, 170–171
factor loadings by, 271–276
in smoking initiation assessment, 261–262, 279, 281, 322
in substance-use comorbidity, 322–323
age-gene-environment interactions, 589
age of onset, 26, 100, 371–372
developmental trajectories by, 200–201
age-related macular degeneration, 46
age-specific risk, measurement of, 35
aggregate effects in complex pathways, 541
aggression, 357
agonists (activators), 143
AHe mice, 435
AIC (Akaike Information Criterion), 274, 312
A inbred mice, 154, 165, 412, 422
A/J mice, 435
A/J×NMRI cross-bred mice, 154, 412
Akaike Information Criterion (AIC), 274, 312
alcohol use
adolescent, 516
in ATBC analysis, 496
Edwards’s theory of, 82–83
Iowa gambling task as predictor, 350
nasal spray use correlated with, 373
in NHANES III analysis, 502
policies influencing, 294–295
as secondary reinforcement, 413
side effects, 86–87
tobacco use concurrent with, 98, 290, 296–298
empirical examples of, 307–323, 496, 502
health effects of, 290
modeling, 299–305
nicotine-dependence correlation, 369, 406, 411–412, 420
trajectories of, 295
ALDH2*2 alleles (alcohol studies), 86–87
alertness, 361–362
allele(s)
identical by descent (IBD), 257, 258
variants of, 554
allele frequency, 48, 258
alpha subunits, 153
Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC), 487, 494–497
alternative reinforcement, 417
Americans with Disabilities Act (ADA), 49
amphetamine, 412
analysis of variance (ANOVA), 215
analytic methods. See also specific method
developmental trajectories, 214–223
molecular genetic studies, 257–259
phenotypic research, 96–103, 113–118
anger, palliative effects on, 357
animal studies. See also mouse models; rat models; specific strain or study
ad lib administration in, 415
adolescent nicotine exposure, 194–195, 589
affective regulation, 443
dependence, 134–135
fetal nicotine exposure, 357
impulsivity research in, 449–450
reward studies, 372–373
transfer to, 350
ANOVA (analysis of variance), 215
antagonists (inhibitors)
CB1 receptors, 160
for mu opioid receptors, 160
muscarinic receptors, 141
nicotine as, 143
for nicotine dependence, 159
anti-inflammatory effects of nicotine, 148–149
antinoception, 162
antisaccade task, 359
antisocial behavior
adolescent smoking and, 200, 202, 211, 232
substance use and, 292–293, 304
antitobacco stimuli, 20
anxiety
adolescent smoking and, 201
nicotine linkage with, 352–353, 445
anxiogenic effects of nicotine, 168
apolipoprotein E testing, 48
approach, versus impulsivity, 378–379
approach-related risk, 339, 346–349, 362
arousal, 378
ASIN40ASP polymorphism, 407
aspartame, 412
association analysis, 258–259, 268–269, 280
assortative mating, 251, 259, 280
ATBC (Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study), 487, 494–497
ATR (Australian Twin Registry), 197, 260–261, 267
attention, 361, 378, 432–434
attentional bias, 440, 456
attention deficit hyperactivity disorder (ADHD), 354–357
adolescent smoking and, 201, 211
as risk factor, 350, 433
substance use and, 292–293, 304
attrition biases, 224
Australian Twin Registry (ATR), 197, 260–261, 267
Automaticity subscale, 90–91
aversive mood symptoms, 443
avoidance-related risk, 339, 351–354, 362

B
backcrossed mice, 151
bacterial contamination, during administration, 145
BALB/cBy mice, 164–165, 430–431, 435
Barratt Impulsivity Scale, 450
Bayes factors, 552, 570
Bayesian analysis, 548–549, 570, 572
Bayesian False Discovery Probability (BFDP), 573
Bayesian Information Criterion (BIC), 310, 312
Bayesian model averaging, 117
Bayes model, 543
BAY K 8644, 167
behavior
analysis of, 163–164
antisocial
adolescent smoking and, 200, 202, 211, 232
substance use and, 292–293, 304
drug-motivated, 404
measurements of, 103
nicotine and, 151–157
phenotypes, 171
response systems, 362
smoking indices, 80
substance-use comorbidity and, 322
tolerance, 168
traits, 344
undercontrol, 98–99
behavioral economics, 417, 420, 454
behavioral genetics
phenotypes in, 492
of self-administration, 153–155
in social context, 514–518
behavioral modeling
methodological issues with, 247–248
of parental smoking, 246
BFDP (Bayesian False Discovery Probability), 573
BIC (Bayesian Information Criterion), 310, 312
bioavailability of nicotine, 7, 20
biochemical indices of smoking, 80, 415
biochemical measures of self-administration, 97
biochemical pathways, 561
BioCyc, 561
biological pathways, candidate, 105
biological plausibility
affective regulation, 443–445
attention/vigilance, 432–433
craving, 438–439
event-related potential, 427–428, 429
impulsivity, 449–450
mood effects, 374
reinforcement, 368–369, 410–414
resting EEG activity, 425–426
rewards, 372–373, 421–423
startle response, 430–431
working memory, 434–436
biological vulnerability, in adolescent nicotine dependence, 194–195
biomedical ontologies, 561
biometric factor model, 253
biometric modeling, 37–45, 86, 88–89, 514
BioPAX Ontology, 561
bitter taste, 84, 148
BKW mice, 443
blood pressure, 448–449
β2 nAChRs, 153
β2 nAChR subunit knockout mice, 159, 166
Bonferoni correction, 546, 573
brain
 nicotine concentrations in, 145
 stimulation, 373
 upregulation in, 144
 of young people, 589
brain imaging, 360
breakpoint
drug use, 418
nicotine use, 420
preferring to wait, 350
breast milk, nicotine concentrations in, 145
breeding
 mice, 150–151, 411
 rats, 411
Brown University Transdisciplinary Tobacco Use Research Center (TTURC), 89, 521, 526
BUB/Bn mice, 165, 412
BUB inbred mice, 154
buzz, 374
cancer genetics, 50
candidate biological pathways, 105
candidate gene studies, 40–45
 adolescent smoking, 342
discordant phenotype associations, 36
epigenetic differences, 37
linkage analysis, 32, 40–42, 267–268, 280–281, 589
multivariant data, 543–546
nicotine dependence, 42
prior knowledge of, 559
smoking association with, 24
SNP relationships over, 545
substance-use comorbidity, 325
trait pathways, 553
variants, 25, 35
candidate neural systems, 343–346
cannabis. See marijuana use
Card Arranging Reward Responsivity Objective Test, 350–351
CART (cocaine- and amphetamine-regulated transcript), 36
cases, in association analysis, 258
catechol-O-methyl transferase (COMT) gene, 269, 408–409, 430
categorical covariates, 276–278
causal contingent common (CCC) pathway model, 253, 263, 278–279
causal differences between groups, 492
causal paths
 phenotypic research, 102, 107–110
 sensitivity to, 105
 smoking as, 352
types of, 111–113
CBA mice, 435
CBI knockout mice, 160, 422
C57BL/6 inbred mice
 conditioned place preference in, 159, 422
dose-dependent effects, 165
 fear conditioning in, 169, 432
 five choice serial reaction time task in, 433
 nicotine consumption, 155, 159
 nicotine-dependence risk, 161
 nicotine effects in, 435
 novelty-seeking behavior in, 156
oral self-administration in, 412–413
 prepulse inhibition in, 430–431
strain comparisons, 153–154, 164–165
in tolerance, 167
C57BL/10 mice, 435
C57BR/cd mice, 435

CCC (causal contingent common) pathway model, 253, 263, 278–279

CCK gene, 269

CD-1 mice, 443

CellDesigner, 561

cell signaling, 161, 167–168

Center for Antisocial Drug Dependence, 260

Centers for Disease Control and Prevention, 498

central nervous system (CNS), 344, 348, 353, 354

centroid. See mean chain smoking, 37

children

effortful control in, 358

secondhand smoke from parental smoking, 246

self-control in, 344

sleep problems in, 357

smoking by, 371

children of twins (COT) design, 251–252, 279, 511

C3H inbred mice

dose-dependence, 165

nicotine effects in, 431, 435

oral self-administration, 412

strain comparisons, 154, 164–165

tolerance in, 162

chippers (light smokers)

adolescent, 213, 232

delay discounting, 350

genetic factors and, 29

versus heavy smokers, 43, 81, 83–84, 90, 94

prevalence of, 193

choice procedure, 369–370, 416, 419–420

cholecystokinin (CCK) gene, 269

Christchurch, New Zealand (CNZ) study, 266

CHRNA2 gene, 42, 376–377

CHRNA3 gene, 376–377

CHRNA4 gene, 268, 407–409, 412

CHRNA5 gene, 342, 376–377

CHRNA7 gene, 408, 409, 428

CHRNA5-A3-B4 haplotypes, 100, 407

CHRNA5-CHRNA3-CHRN4 nicotinic receptor genes, 43

CHRN2 gene, 268, 407, 408, 409

CHRN3 gene, 342

CHRN3-CHRNA6 nicotinic receptor locus, 43

chronic exposure, 405, 449

chronic smoker endophenotypes, 403, 404–406

affective regulation, 443–449

cognitive control, 432–438

craving, 438–443

electrophysiological measures, 425–432

future research directions, 452–457

impulse control, 449–452

investigation rationale, 406–410

motivational mechanisms, 410–424

summary/conclusions, 457–458

chronic tolerance, 163

CIDI (Composite International Diagnostic Interview), 81

cigarette(s)

availability of, 99

consumption of, 4, 20

design of, 7, 20

pricing of, 20, 21, 520

vendor locations, 521, 522

Cigarette Dependence Scale, 79n

Cigarette Evaluation Scale, 423

cigarettes per day (CPD)

in ATBC analysis, 496

with CYP2A6 gene variants, 418

delay discounting correlation, 452

as dependence measure, 79, 80

in factor analysis, 88–89

in NHANES III analysis, 502

nicotine metabolism and, 406

predictive value of, 80

recall reliability, 26–27

as smoking cessation predictor, 81, 413

in TUS-CPS analysis, 498, 499

cigarettes per month, 91

class extraction, model misspecification related to, 222

classic dependence criteria, 84, 86

classification bias, 493

class I–IV phenotypes, 28–31

class membership, for familial resemblance, 256–257

clinical preventive services, 4

Clinical Research Support System, 415

cluster analysis

developmental trajectories, 211, 217–223

discrete versus continuous phenomena in, 219

static versus dynamic, 219–220, 232

within-class variability in, 220–221, 233

CNS (central nervous system), 344, 348, 353, 354

CNZ (Christchurch, New Zealand) study, 266

cocaine, 374, 456–457

cocaine- and amphetamine-regulated transcript (CART), 36

coexpression of receptors, 141, 142
COGA (Collaborative Studies on Genetics of Alcoholism), 266

cognition changes, 163–164

cognitive control, 403, 424–425, 432–438
during adolescence, 380
alertness in, 361
electrophysiological measures, 425–432
as endophenotype measurements, 358, 360
impairment, 113
impulsivity and, 112, 378–379
physiological basis of, 381
cognitive deficits reversal, 434–435
cognitive measures, of craving, 440
cohorts
effects of, 515
research models for, 519
Collaborative Studies on Genetics of Alcoholism (COGA), 266
colorectal polyps, 542
commercial testing, 50
common pathway model, 252, 270
communication of genetic findings, issues in, 45–50
comorbidity
psychiatric (See psychiatric comorbidity)
substance-use (See substance-use comorbidity)
complementary dimensions of dependence, 97
complex traits
defining features, 31
gene factors in, 35
genome-wide association studies for, 46
multiple determinations of, 22
replication difficulties, 45
sensitive genetic measures, 341
similarity of, 24–25
Composite International Diagnostic Interview (CIDI), 81
compulsive smoking, 80
computational symbolic theory, 559–560
COMT gene, 269, 408–409, 430
concurrent choice procedure, 416
conditional independence, 256
conditional triggers to smoke, 588
conditioned place preference (CPP)
biological plausibility of, 372–374, 421
in mice, 157–158, 161, 422
in rats, 423
conditioning, contextual, 163–164
conduct disorder
adolescent smoking and, 201, 211, 232
definition of, 357
substance use and, 292–293, 304
confounding factors, 32
consensus, across indicators, 77
constitutional hypothesis, 24
construct
definition of, 75
emerging, 520
proximal, 522
refinement of, 25–27
construct properties, 75
construct validation, 33, 34, 35, 75–78
consumption level
during adolescence, as indicator of adult dependence, 230–231
adolescent nicotine dependence and, 193
assessment of, 415, 418
contamination, during administration, 145
context-sensitive physiological measures, 363
contextual conditioning, 163–164
contingency table, smoking-drinking, 313, 315–316
contingent factors, 247
continuant, 541, 559
continuous factors, 256
continuous-level information, for behavioral modeling, 247
continuous performance task (CPT), 362, 378, 433
continuous phenomena, versus discrete phenomena, 219
control, endophenotype measures of, 357–362
control-related risk, 339, 354–357, 362
controls, in association analysis, 258
copy-number variation, 36
core criteria, 76, 77
core dependence dimension, 87–95
core factors, 97, 168
core strategy, 510
cortisol, 447
cosegregation of smoking behaviors, 24
cost(s)
genetic testing, 50
smoking cessation, 593
tobacco use, 4, 21
COT (children of twins) design, 251–252, 279, 511
cotinine
biological activity of, 148
clearance factors, 39–40
as nicotine by-product, 406
covariance, 32, 95–96, 341–342
 in latent growth curve models, 254–255
 in structural equation modeling, 248, 250
CPD. See cigarettes per day
CPP. See conditioned place preference
CPT (continuous performance task), 362, 378, 433
 craving, 438–439
 abstinence-induced (See abstinence-induced craving)
 in adolescents, 192
 cue-induced (See cue-induced craving)
 dopaminergic systems associated with, 111
 effects of, 405
 measurement of, 403, 439–440
Craving subscale, 90–91
CREB activation, 160–161
CREB mice, 422
critical constituents, 25
cross-cultural differences, 515–516
cross-sectional studies, of substance-use comorbidity, 291
cross-species analysis, 348
cue(s)
 in animal studies, 411
 relapse, 99
 reward signaling, 350
cue-induced craving, 438–439
 with dependence, 441–443
 effects of, 405
 future research directions, 456–457
 measurements, 403
 physiological basis of, 111, 588
 procedures to elicit, 440–441
 research limitations in, 456
 cue-self-administration response, 94
cultural transmission
 adolescent smoking and, 198
 effects of, 515
 as environmental factor, 21
 phenotypic, 251
 research models for, 519
 twin studies of, 262
cumulative effects, of pathogens, 103
cumulative risk, measurement of, 35
CYP2A6 gene
 adolescent smoking and, 199
 analysis of, 554, 555
 association analysis of, 268
coding for, 408–409
 mood effects with, 376
 in nicotine metabolism, 22, 39–40, 149, 342, 406
 in smokers, 413
 variants in, 371, 418
Cyp2a5 gene variants, 149, 155, 413
CYP2B6 gene, 39
CYP2D6 gene, 39
Cys-Cys pairs, 136
cytochrome P-450 (CYP) system, 268
danger-alarm responses, 353, 354
data-mining techniques, 541–542
data sets
 ATBC analysis, 495
 NHANES III analysis, 500–501
 smoking cessation analysis, 493–494, 494
 TUS-CPS analysis, 498
DAT/SLC6A3 (dopamine transporter protein), 268
DBA/2 inbred mice
 conditioned place preference, 422
 dose-dependent effects, 165
 IV self-administration, 156
 nicotine consumption, 159
 nicotine effects, 435
 oral self-administration, 412
 prepulse inhibition in, 430–431
 strain comparisons, 153–154, 164–165
 tolerance in, 162, 163
dDC (DOPA decarboxylase), 269
definition variables, in structural equation modeling, 248
dehydroepiandrosterone (DHEA), 447
delay discounting
 definition of, 348
 in impulsivity, 349, 449, 450–452
 physiological basis of, 379
 study subjects for, 350
deleterious effect prediction, 554
dependence. See also nicotine dependence
 addiction as, 77
 core features of, 592
 definition of, 75
 distal measures of (See distal measures)
 maintenance of, 598
 model evaluation of, 78
 patterns, 94
severity with comorbidity, 98
depression, 351–352
nicotine amelioration and, 443
smoking association with, 444
subthreshold, 352
desensitization, 146
developmental pathways, 100, 589
impact on trajectory study, 222
developmental psychopathology, 191–202, 292–293
developmental trajectories. See adolescent developmental trajectories
DHβE, 159, 169
DHEA (dehydroepiandrosterone), 447
diabetes mellitus, 46
Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria
adolescent smoking, 192, 264
attention deficit hyperactivity disorder, 356
dependence, 37–38, 40, 81, 86
poor agreement with FTND, 25–26
scales in, 79

discriminative validity, 77
discussion groups (OBO Foundry project), 560
Disease Ontology (DO), 560
disease risk, 541, 550
discrimination, against nicotine dependence, 46–47, 49
drug of nicotine, 161, 165
differences in, 367, 416
distribution of, 370
standardization, 152
dose of nicotine, 161, 165
double variant haplotype, 545
downregulation, 144–145, 588
doctoral processes, 81–82, 106
DRD4 (dopamine receptor), 268
DRD5 (dopamine receptor), 268
DRD4 exon III polymorphism, 199

distal measures
agreement among, 88
early versus mature states, 74
genetic mapping, 78–81, 86–87, 103–105
versus proximal measures, 516

distress tolerance, 448
distributional assumptions
in growth curve models, 255
in structural equation modeling, 249

dNA methylation, 36
dNA sequences analysis, 554
DO (Disease Ontology), 560
DOPA decarboxylase (DDC), 269
dopamine
in attention deficit hyperactivity disorder, 356
impulsivity linkage with, 451–452
inactivation of, 430
mesotelecephalic, 171
midbrain circuits, 348, 349, 350
in nicotine binding role, 406–407
in nicotine dependence, 43, 410
receptors, 156, 343
regulation of, 540
reinforcement role of, 374, 407
reward pathways, 342, 349, 352
signaling, 160
dopamine β-hydroxylase (DBH), 269
dopamine hypothesis of dependence, 588
dopaminergic neurons, in ventral tegmental area, 588
dopaminergic systems
adolescent smoking and, 198–199, 201
association analysis of, 268–269

disorder markers, 107
dispositional tolerance
acquisition of, 162
versus behavioral tolerance, 164
in tolerance, 168
distal influence, versus proximal influence, 519–522
Monograph 20. Phenotypes and Endophenotypes

DRD2 gene, 409
- addiction association with, 32
- coding for, 408
- commercial testing for, 50
- dependence association with, 407
- in craving, 441
- variants, 198

DRD4*7-repeat allele, 376

drinking. *See* alcohol use

drinking-water administration, 147–148, 172

drug addiction. *See* addiction; substance use; specific drug

drug-motivated behavior, 404

drug response comparison, 490–492, 491

DSM. *See* Diagnostic and Statistical Manual of Mental Disorders criteria
dual-trajectory model, of smoking-drinking trajectories, 315–316
dynamic clustering
 - *versus* static clustering, 219–220, 232
 - within-class variability in, 220–221, 233

E
- early-emergent motive, 91
- early-onset smokers
 - risk for persistence, 200, 212–213, 230–231
 - substance use and, 292, 296–297, 315, 320
- early smoking experiences (ESE), 375
- early tobacco exposure, 101, 155
- ecological momentary assessment (EMA), 255, 525
- economic deprivation, 520
- educational attainment, adolescent smoking and, 227–228, 232
- Edwards’s theory of alcohol dependence syndrome, 82–83
- EEA (equal environments assumption), 516–517
- EEG (electroencephalogram), 354, 403, 425–427
- effortful control, 358
- elasticity of demand, 417
- elation, 374
- electroencephalogram (EEG), 354, 403, 425–427
- electromyography (EMG), 431
- electrophysiological measures, 378, 425–432
- EMA (ecological momentary assessment), 255, 525
- EMG (electromyography), 431
- empirical-Bayes approach, 549, 551
- empirical search strategies, 117

employment discrimination, 49
employment status, of hard-core smokers, 35
encoding prior knowledge, 571
endogenous cannabinoid systems, 159, 160
endogenous enkephalin system, 160
endogenous event-related potentials (ERPs), 427

endophenotypes, 5, 408–410
- caveats, 110–111
- characteristics of, 107–110
- in chronic smokers (See chronic smoker endophenotypes)
- conceptual issues, 381–383
- criteria, 413
- disorders associated with, 106
- future research directions, 455–457, 594
- gene linking in, 347, 409
- measurement of, 349–351, 353–354, 355, 357–362
- motivational effects, 452, 454–455
- in network models, 558
- nicotine dependence, 409, 453
- phenotypes associated with, 5, 33–34
- pre-exposure risk, 340–347
- in psychiatric genetics research, 25
- replicability of, 27
- transitional, 107, 108, 200, 233
- types of, 340
- enhanced clearance. *See* dispositional tolerance entities, 541, 559, 560

environmental factors, 99–103. *See also* social context; specific factor
- adolescent smoking, 196–197
- comorbidity, 99
- cue-induced craving, 438–439
- enrichment, 36
- in experimentation, 31
- gender differences in, 38
- gene expression variation from, 36–37
- genetic factors in, 35, 515
- importance of, 29
- linkage analysis, 258
- measurement of, 35
- in nicotine dependence, 22, 23
- nicotine use, 158
- relative contribution of, 30
- in smoking decline, 20
- substance use, 294–295
- twin studies, 251, 262, 279, 280

environmental pathogens, 5, 25, 35
epidemiology, 31–37
 future research in, 594
 genetic, 257
 extended, 250–252, 262–269, 279, 280
 hierarchical modeling in, 570–571
 perspectives from, 514
 phenotypic definitions in, 493
 public health outcomes in, 492
 triangle, 513
epigenetics, 36
episotasis, 32–33
epistemology, 74, 77
equal environments assumption (EEA), 516–517
equifinality, 191, 220
ERPs (event-related potentials), 403, 427
ESE (early smoking experiences), 375
ethanol, 412. See also alcohol use
ethnic differences, in developmental trajectories, 213–214, 279
etiological architecture, 510–511, 515–518, 519, 527, 530
etiology
 diverse, 82, 106
 matrix of, 509
 of phenotypic assay, 83
 of symptoms, 78
euphoria, 374
Event Ontology (EVO), 560
event-related potentials (ERPs), 403, 427
EVO (Event Ontology), 560
exchangeable classes, 551
excitatory tone, 141
executive function
 cognitive control and, 379
 definition of, 361
 nicotine dependence and, 34
Exeuctive Order 13145, 49
exogenous event-related potentials (ERPs), 427
experimental design, basics of, 149–150
experimentation
 influences on, 31
 progression from, 30
exposure model, 365
extended structural equation modeling (XSEM), 249
extended twin family studies, 250–252, 262, 279, 280
extra-nicotinic mechanisms, 156–157
extraversion, 346, 348–349
extreme group membership, 96, 97
extreme groups
 alternatives to, 116–118
 constructing, 114–116
 eyelink response, 448

F
factor analysis, 37–38, 265
 consistency, 88
 correlation among, 80, 87
 DSM-IV correspondence with, 103
factor loadings, 271–278
factor mixture model (FMM), 256
factor models, 256
Fagerström Test for Nicotine Dependence (FTND), 79–80
 as assessment tool, 405
 dependence criteria, 37–38
 FTQ as precursor to, 24
 linkage analysis, 40–42, 589
 poor agreement with DSM, 25–26
 reliability and validity of, 26, 79–80
 scales in, 79
 visuospatial attention association with, 434
Fagerström Tolerance Questionnaire (FTQ), 79–80
 for adolescent smoking, 192, 230–231, 264
 as physical dependence measure, 79
 startle response inconsistency, 448
 in susceptibility loci mapping, 24
 test-retest reliability, 26
false discovery rates (FDRs), 542, 546, 570, 573
false positive reports, 570
familial resemblance, class membership for, 256–257
family-based studies
 design of, 518
 ecological momentary assessment in, 526–527
 heritability documentation, 28–29
 new methodologies in, 521
 family dysfunction scores, 33
 family environment, adolescent smoking and, 196–197
 family history analysis, example of, 225, 230, 232
fast-ionotropic nicotinic receptors, 136
FDRs (false discovery rates), 542, 546, 570, 573
fear conditioning, 169, 432, 435
fear responses, 353, 354
feeder stream influences, 81–82, 106
female smokers. *See also* gender differences
adolescent, 343
blood pressure changes in, 448
nicotine-dependence factors, 37, 38, 99
OPRM1 gene in, 419
statistics on, 21
twin studies, 515, 517
fetal nicotine exposure, 357
FHS (Framingham Heart Study), 266
final common pathway, 82, 93, 106
finite mixture model, 256
Finnish Twin Registry, 262
Finn T16-25 study, 307–323
methods, 307–310
results, 310–323
first experience with smoking. *See initial sensitivity
first-stage estimates, 572
Fisher, Ronald Aylmer, 22, 24
five choice serial reaction time task (5CSRTT), 432
five-class solution, example of, 226
fixed effects, 215–216
flunarizine, 168
FMM (factor mixture model), 256
focused interaction testing framework, 542
forced choice procedure, 416
formal model, 541, 559
Fosb knockout mice, 161
Foundational Model of Anatomy, 560
four-point Likert scale, 375
Framingham Heart Study (FHS), 266
F344 rats, 423
FTND. *See Fagerström Test for Nicotine Dependence
FTQ. *See Fagerström Tolerance Questionnaire
future research. *See also specific topics
crosscutting issues, 595–596
implications of, 588–591
understanding, 588–596

G

γ-aminobutyric acid (GABA), 157, 406–407
γ-aminobutyric acid receptors, 43
GABA (γ-aminobutyric acid), 157, 406–407
GABAergic interneurons, 142
gateway theory of substance use, 292
GAW (Genetic Analysis Workshops), 266
gender differences. *See also* female smokers;
male smokers
adolescent smoking, 196, 199, 227–228, 260, 263–264, 342
animal studies, 155, 164
cross-cultural, 515
factor loadings by, 271–276
nasal spray use, 373
nicotine-dependence factors, 38, 99
nicotine-dependence heritability estimates, 279, 281
OPRM1 gene, 419
smoking initiation, 267
startle response, 378
substance-use comorbidity, 304
twin studies, 262, 517
gender heterogeneity, 273–274, 276–278
gene(s). *See also* candidate gene studies
endophenotype linkage risks, 347, 409
in nicotine dependence, 32, 43
gene-environment interaction, 33, 515
adolescent smoking, 197–200, 259, 346
biological process initiation, 591
environmental pathogens in, 25
in etiology, 509
investigation of, 546
substance-use comorbidity, 320
underuse of, 5
gene expression, 36–37
gene-gene interaction, 199, 343, 546
gene-nicotine dependence associations, 45–46
Gene Ontology, 560
gene-pathogen relations, 100–101
general growth mixture modeling (GGMM), 308–311
generational changes, in smoking, 515
Genes, Environment and Health Initiative, 531
genetically informative designs, 527
genetically modified mice, 444
Genetic Analysis Workshops (GAW), 266
genetic architecture, 510
genetic association studies, 554, 556–559
genetic drift, 150
genetic epidemiology, 257
extended, 250–252, 262–269, 279, 280
genetic factors
acute tolerance, 162–163
conditioned place preference, 159
craving, 441
detection of, 493
in experimentation, 31
importance of, 29
measured, 4
in nicotine effects, 22, 39–40, 539
quantitative models, 512
in reinforcement, 418
relative contribution of, 30
selecting for, 96–97
relative contribution of, 30
selecting for, 96–97
Genetic heterogeneity, 32
adolescent smoking initiation, 196, 201–202, 233
in developmental trajectories, 190, 233–234
gender, 273–274, 276–278
phenotypes, 341
population, 217
estimating, 218, 221–222
receptor, 139
Genetic heterogeneity models, difference in fit between homogeneity models and, 274–275
Genetic Information Nondiscrimination Act (GINA), 49
genetic latent class models. See latent class analysis
genetic latent growth curve models. See latent growth curve models
genetic mapping, 73–75. See also phenotypic research
analytic strategies, 96–103
construct validation, 75–78
core dependence dimension, 87–95
covariation among measures, 95–96
distal measures of dependence, 78–81, 86–87, 103–105
multidimensional measures, 81–86
person factors implications in, 97–98
genetic modeling, 245–281
methodological and conceptual issues, 247–248
statistical framework for, 248–259
genetic polymorphism effects, 553–554
genetic substrata, associated with tolerance, 162
genetic testing, 46, 50
genetic variants
biological processes associated with, 109
causal, 546
disease association with, 550
evaluation context for dependence, 76
phenotypes with, 102, 106, 109, 111
pleiotropic associations of, 47–50
selection of, 101
value of, 110
gene-to-phenotype influence, 78
gene-transcription cascades, 169
genome(s)
candidate genes in, 24
data, 561
studies of, 589
genome markers, linkage analysis, 257–258
genome scan, 266–267
Genome-wide association studies (GWAS), 25, 44, 269
event-related potentials, 428, 430
FTND, 42–45
genetic variant findings, 589
genotyping technologies used in, 258–259
potential of, 45–46
results from, 342
susceptibility loci identification, 407–408
genotyping
effects of variables on, 553
mouse strains, 150
P450, 39
with phase interaction, 545
phenotypes and, 560–562
technologies, 257–259
gene-to-phenotype influence, 78
genome(s)
candidate genes in, 24
data, 561
studies of, 589
genome markers, linkage analysis, 257–258
genome scan, 266–267
Genome-wide association studies (GWAS), 25, 44, 269
event-related potentials, 428, 430
FTND, 42–45
genetic variant findings, 589
genotyping technologies used in, 258–259
potential of, 45–46
results from, 342
susceptibility loci identification, 407–408
genotyping
effects of variables on, 553
mouse strains, 150
P450, 39
with phase interaction, 545
phenotypes and, 560–562
technologies, 257–259
geographic information systems (GIS), 520–521
GGMM (general growth mixture modeling), 308–311
GINA (Genetic Information Nondiscrimination Act), 49
GIS (geographic information systems), 520–521
global use, 4, 21
Glura (glutamate receptor), 157, 169
Glutamate receptor (Glura), 157, 169
general growth mixture modeling, 202, 218, 221, 308
Go/no-go task, 358–359, 451
government policies, 7, 20
effect on adolescent smoking, 193
substance use, 294–295
government policies, 7, 20
effect on adolescent smoking, 193
substance use, 294–295
grant funding, 45–46
graph connectivity, 571
grouping variables, for growth curve modeling, 216–217, 232–233
group membership, stability of, across statistical models, 229–230
growth curve, nonlinear, 255
growth curve mixture modeling, 215–217, 248–249
growth mixture modeling (GMM), 202, 218, 221, 308
growth process, random effects for, 220–221

gum. See nicotine gum
gustatory reaction to tobacco, 75, 84

GWAS. See genome-wide association studies

h

habituation, versus addiction, 24
half-life of nicotine, 147
haplotypes
 dependence and, 100
 disease association with, 544
 double variant, 545
hard-core smokers, characteristics of, 35–36
Hardy-Weinberg equilibrium, 545
head rush, 374
health care access, disparities in, 47
health effects of smoking, statistics on, 4, 21
heart rate, 351, 354, 440, 447
Heaviness of Smoking Index (HSI)
 components of, 37, 413
 predictive value of, 80, 89–90
 scales in, 79
 zero-order correlations in, 80
heavy smokers, 93
 delay discounting, 350
 diagnostic variance in, 89
 genetic factors in, 29
 versus light smokers, 43, 81, 83–84, 90, 94
 substance use and, 296–297, 315
Heavy Smoking Index, 265
hedonic impact of nicotine, 158, 372, 424
heritability
 adolescent nicotine dependence, 86, 342
 antisocial scores, 33
 anxiety, 445
 delay aversion, 351
 dependence, 37–38, 86, 433–434
 diagnostic criteria, 30, 38
 endophenotypes, 107
 estimates, 29–30
 event-related potential, 428, 429–430
 factors in, 28–29
 gender differences in, 279, 281
 impulsivity, 451
 neuroticism, 101
 nicotine metabolism/clearance, 38–40
 P450 genotype, 39
 prepulse inhibition startle response, 431–432
 response inhibition, 359
 resting EEG, 426
 smoking cessation, 406
 smoking heaviness, 90
 withdrawal symptoms, 30
 working memory, 437
heterogeneity. See genetic heterogeneity
hierarchical modeling
 estimation for, 575–576
 with ontologies, 551–552
 with prior knowledge, 570
 for statistical modeling, 117
 stochastic variable selection and, 547–549, 572, 573
 weighting in, 570
high-affinity nAChRs, 156, 159
higher-order joint actions, 346
high genetic proneness, 96
hippocampal activity, 141, 142
HISTONE proteins, 36
home smoking bans, 99
homogeneity models, 271
 difference in fit between heterogeneity models
 and, 274–275
homogeneous population
 assumption of, 248
 for growth curve modeling, 216–217
Hooked on Nicotine Checklist, 26
Horn-Russell Scale, 34
hostility, 357, 362, 377
Household Adult Questionnaire, 501
HSI. See Heaviness of Smoking Index
HTR5A gene, 42
5-HT gene, 33, 269, 441
5-HTTLPR gene, 101, 199, 409
 in adolescent girls, 343
 in affective response, 112, 446
 coding for, 408
human clinical research
 affective regulation, 444–445
 electrophysiological measures, 426
 event-related potential, 428
 impulsivity, 450
 reinforcement, 413–414
HumanCyc database, 556
human genome, similarity with mice genome, 134
3-hydroxycotinine, 406
hyperactivity, 354, 356
hypertensive rats, 449
association data integrated into, 259
substance-use comorbidity, 306, 308, 321
latent phenotype model, 252, 270
latent profile modeling, 90–91
latent trait, 270
latent variables, 77, 248, 256
substance-use comorbidity, 306, 321, 324
LCGA (latent class growth analysis), 218, 226–229, 248–249
LD (linkage disequilibrium), 543, 545–546
learning associations, 349
learning differences, 158, 169
letter cancellation task, 433
level, in latent growth curve models, 254
Lewis rats, 411, 423
LGC. See latent growth curve models
liability models, of smoking behavior stages, 264, 280
lifetime regular smoking, definition of, 29
ligand-activated ion channels, 143
light smoking. See chippers
likelihood-based approaches, in cluster analysis, 217–218
likelihood ratio tests, 310, 312–313
linear growth, assumption of, 255
linear model, 116
linear regression, in structural equation modeling, 248
linear relations, 25
linkage analysis, 257–258, 266–268
candidate gene studies, 32, 40–42, 267–268, 280–281, 589
environmental factors, 258
genome markers, 24, 257–258
nicotine-dependence indices, 40–42
linkage disequilibrium (LD), 543, 545–546
Lister rats, 432–433, 444
lithium-chloride conditioned place aversion, 161
liver cytochrome P-450 enzyme CYP2A6. See CYP246 gene
location of smoking, 527
loci segregation, 40
locomotor activity, 369, 422
logarithm of odds (LOD) score, 40–42, 258, 267
logistic regression curves, 91
Long-Evans rats, 411
longitudinal data
growth curve modeling of, 218–219, 234
on substance-use comorbidity, 291, 320
Loss of Control subscale, 90–91
low genetic proneness, 96
LPAAT-delta gene, 42
lung, nicotine concentration in, 145
lung cancer, predisposition to, 44, 50

M
macrocontextual factors, 509, 514
as moderators, 515–516
macroenvironment proximal indicators, 521–522
macular degeneration, age-related, 46
magnetic resonance imaging (MRI), 351, 439, 456–457
maintenance of dependence, 589
male smokers. See also gender differences
adolescent, 342, 348
blood pressure changes in, 449
nicotine-dependence factors, 37, 38, 99
OPRM1 gene in, 419
statistics on, 21
twin studies, 515, 517
manifestations of dependence, 75
Mannheim Study of Risk Children, 199
MAO. See monoamine oxidase
MAP3K4 gene, 42
marginalization
of smoking, 4, 21
of social groups, 47
marginal nonnormality, 221
marijuana use
early pleasurable, 374
tobacco use concurrently with, trajectories of, 296–298
modeling, 304–305
trajectories of, 295–296
marketing direct-to-consumer, 50
Markov chain Monte Carlo (MCMC) methods, 542
masking etiology, 82
masking of causal factors, 74
maternal care, 36
mature subphenotypes, 82, 110–111
maximum acute tolerance, 162, 165
maximum price assessment, 418
McGill University Study on the National History of Nicotine Dependence, 199
MCMC (Markov chain Monte Carlo) methods, 542
mean (centroid)
ccluster analysis, 217
growth curve modeling, 255
structural equation modeling, 248–249
measured genetic factors, 4
measurement invariance, 247, 255, 276, 280
mecamylamine, 159
mediation
 of conditioned place preference, 161
 by endophenotypes, 107–108
 of nicotine, 160
memantine, 156, 171
memory, 379, 434–438
Mendelian randomization, 118
mesolimbic dopaminergic system, 410, 411
metabolic tolerance, 97
metabotropic glutamate receptor 5 (mGluR5), 156
methodological issues
 assessment precision, 520
 behavioral modeling, 247–248
 family-based studies, 521
 future research directions, 383–384, 594
 genetic modeling, 247–248
 innate sensitivity research, 366–368
 real-time interaction, 524–525
 research limitations, 366–368, 376, 383–384
 substance-use comorbidity, 321–323
methyllycaconitine citrate (MLA), 159
mGluR5 (metabotropic glutamate receptor 5), 156
mice. See mouse models
microchip analysis, 170, 258–259
microcontextual factors, 509, 514
 coding of real-time interaction, 524
 as moderators, 516–518
microsatellites, 543, 551
microsocial context, quantifying, 522–525
midbrain dopamine circuits, 348, 349
Mid-South Tobacco Family (MSTF), 267
migration levels, 516
Minnesota Nicotine Withdrawal Scale, 446
Minnesota Twin Family Study (MTFS), 196, 260, 360
mirror tracing, 448
misleading claims, 50
misspecification, model, 222
mixed models, developmental trajectories, 215
MLA (methyllycaconitine citrate), 159
model(s)
 clarification of, 559
 searching, 551
 selection of, 547
 with stochastic variable selection, 549–550, 551–552
model fit, evaluation of, 310, 312–313
modeling. See also specific types of modeling
 phenotype (See phenotype modeling)
 with prior knowledge, 570
 selection algorithm, 577–578
 uncertainties in, 546, 547, 549
 model misspecification, 222
 moderation of relationships, 248
 modified pairwise interaction, 545
 modulation
 dopamine receptors, 156
 nicotine rewards, 160
 molecular genetic studies, 266
 of adolescent smoking, 198–199
 analytic framework for, 257–259
 Monitoring the Future project, 299, 304
 monoamine oxidase (MAO)
 in anxiety disorders, 353
 neuroticism and, 351
 in neurotransmitter breakdown, 540
 monoamine oxidase (MAOA/MAOB) gene, 269
 mood effects, 373–376, 380–381
 in ATBC analysis, 497
 measures of, 372
 of nicotine, 366
 Mood Form of Diener and Emmons, 374–375, 446
 morning smoking. See time to first cigarette
 morphine, as nicotine substitute, 153
 Morris water maze, 435
 mortality statistics, 4, 21
 motivational mechanisms, 84, 403, 408
 reinforcement, 410–420
 rewards, 420–424
 Mouse Genome Informatics database, 150
 mouse models, 134–135, 418
 adolescent exposure, 194–195
 behavioral changes, 151–157
 future research directions, 168–172
 nicotine administration, 145–149
 nicotine dependence, 149–151
 nicotinic receptors, 135
 customizing, 141–143
 functional diversity of, 136–141
 molecular biology of, 136
 nicotine as agonist/antagonist, 143–144
 upregulation, 144–145
 reward, 157–161
 startle inconsistency, 444
 strains, 134 (See also strain-specific differences; specific strain)
 research options with, 592
 selection of, 150–151
tolerance, 162–168
mouse-rat differences, 150
movies, smoking in, 7, 20, 523
MRI (magnetic resonance imaging), 351, 439, 456–457
MSTF (Mid-South Tobacco Family), 267
MTFS (Minnesota Twin Family Study), 196, 260, 360
multidimensional measures, of nicotine dependence, 81–86
multifinality, 191
multilevel analysis, difficulties of, 248
multiple trajectories, developmental, 191–202, 232–234
multivariate analysis
developmental trajectories, 215
latent growth curve models, 255
substance-use comorbidity, 315–316, 321
twin studies, 262–263
multivariate factor model, 252–253
multivariate normal distribution
in growth curve models, 255
in structural equation modeling, 249
multivariate normality, within-class, 221, 233
mu opioid knockout mice, 422
mu opioid receptors
in conditioned place preference, 160
in nicotine replacement therapy, 407
reward mediation, 419
in tolerance, 167, 168
muscarinic acetylcholinergic systems, 166, 168
muscarinic receptors
in aging, 170
blocking, 140–141
metabotropic, 136
muscle tension, 377–378
mutations
rate predictions, 554
for tolerance, 166
Muthén, Bengt, 218

N
nAChRs. See nicotinic acetylcholine receptors
Nagin, Daniel, 218
naloxone, 160
nasal spray. See nicotine nasal spray
National Cancer Institute, 498
National Center for Biomedical Ontology (NCBO), 561
National Comorbidity Study, 445
National Health and Nutrition Examination Survey (NHANES III), 487, 494, 500–503
National Institute of Mental Health Diagnostic Interview Schedule (DIS), 81, 501
National Institute on Drug Abuse Genetics Consortium, 43
National Institutes of Health, 531
National Longitudinal Study of Adolescent Health (Add Health), 197–198, 261, 517
National Survey on Drug Use and Health, 93
N-back task, 436
NCBO (National Center for Biomedical Ontology), 561
NDSS. See Nicotine Dependence Syndrome Scale
NEAD (Nonshared Environment in Adolescent Development) Project, 509, 524–525
Netherlands Twin Register, 262
Netherlands Twin Study of Anxious Depression (NETSAD), 266–267
network models, 554, 556–558
neural incentive system, 346
neural networks modeling, 340–341
neural substrata, associated with tolerance, 162
neural systems, candidate, 343–346
neurexin 1 (NRXN1) gene, 43
neurobiological analysis, 348
neurobiological dependence pathways, 43
neurobiological systems, 344
neuroendocrine response, to stress, 354
neuroimaging, 360, 379–380
neuropeptide systems, 159, 160
neuroprotection, 170
neuroticism, 101, 351–353
neurotransmitter systems
in chronic tolerance, 166–167
in conditioned place preference, 159–161
New England Family Study, 526
NHANES III (National Health and Nutrition Examination Survey), 487, 494, 500–503
nicotine
administration of (See administration)
age-related response differences, 194–195
as agonist/antagonist, 143–144
anti-inflammatory effects of, 148–149
anxiogenic effects of, 168
behavioral changes from, 151–157
bioavailability of, 7, 20
enforcement timing, 369
in free-base form, 148
frequency of use, 4, 21, 369–371, 413, 420
hedonic impact of, 158, 372, 424
neuronal activity induced by, 43
physical changes from, 162
pre-exposure risk (See pre-exposure risk)
pretreatment, 420
reinforcement (See reinforcement)
rewards and (See reward)
tolerance (See tolerance)
nicotine aerosols, 147
nicotine-binding sites, 135, 144
nicotine choice, 369
nicotine choice procedure, 416, 419–420
nicotine cigarette choice paradigm, 419
nicotine clearance
dispositional tolerance, 162, 164, 168
genetic factors in, 39–40, 539
nicotine dependence, 20–22, 149–151
in adolescence (See adolescent nicotine dependence)
concurrent with substance use (See substance-use comorbidity)
construct refinement, 25–27
craving associated with (See craving)
crosscutting issues, 595–596
developmental pathways in, 589
distal measures of (See distal measures)
distal measures (See distal measures)
edendophenotypes in, 409, 453
epidemiological concepts, 31–37
future research directions, 455–457
heritability of (See genetic factors; heritability)
historical perspective of, 22–25
inference of, 77
mouse models of (See mouse models)
phenotype (See phenotype(s))
progression research, 592
psychiatric disorders correlated with, 98
risk with, 375–376
smoking compared with, 87
versus tobacco dependence, 75
treatment of (See smoking cessation)
understanding of, 588–596
nicotine-dependence measures, 26, 28, 37–45, 73, 78, 79
adolescents, 192, 230–231, 264
example of, 225
invariance, 276, 280
Nicotine Dependence Syndrome Scale (NDSS), 82–84
abbreviated, 500
as assessment tool, 405
subscales of, 90
in TUS-CPS analysis, 498
nicotine deprivation memory deficits, 436
nicotine gum
as consumption assessment, 415
effect on EEG activity, 426
in memory effects, 435
versus placebo, 370
nicotine metabolism
association analysis of, 268
catabolism of, 149
CPD variation and, 34
CYP2A6 gene in, 39–40, 149, 342, 406, 418
in dependence risk, 22, 342
in ontology example, 562–569
pathway, 556
nicotine nasal spray
aversions with DRD4*7-repeat allele, 376
as consumption assessment, 415
in current smokers, 374
memory effects of, 435–436
versus placebo, 369–370
pleasurable responses to, 373
nicotine patches
effect on EEG activity, 426
in memory effects, 435
on nonsmoking adults, 377
Nicotine Pharmacokinetics Ontology (NPKO), 539, 561, 571
nicotine replacement therapy (NRT), 406. See also smoking cessation
nicotinic acetylcholine receptors (nAChRs), 134
association analysis, 268
as attention factor, 362
beta2-subunit (CHRNB2), 268
binding to, 588
blockading, 140–141, 143–144
chromosomal regions, 43, 44, 50
in chronic tolerance, 166–167
coding for, 408
customizing, 141–143
desensitization of, 146
fast-ionotropic, 136
functional diversity of, 136–141
high-affinity, 157
illustration, 409
as impulsivity mediator, 449
inactivation of, 143
inferences from, 152–153
initial sensitivity response with, 376–377
molecular biology of, 136
in nicotine binding role, 406–407
in nicotine dependence, 411
structure of, 136–138, 138
tissue-specific responses, 71, 133
in tolerance, 168
upregulation of, 135, 144–145, 588
nicotinic receptor subunits, 136–140
CHRNA5/CHRNB3 genes, 342
composition of, 139
functional variants of, 140
limiting expression, 141–143
structure of, 136, 137
nimodipine, 162, 167, 168
nitric oxide, in conditioned place preference, 161
7-nitroindazole, 161
N-methyl-D-aspartic acid (NMDA) glutamate receptors, 156
NMRI outbred mice, 154, 412, 430
nomological net, 76
noncoding DNA sequences, 554
nonlinear growth curves, 255
nonnicotinic systems, 166
nonnormality, 221
Nonshared Environment in Adolescent Development (NEAD) Project, 509, 524–525
nonsmokers (abstainers)
characteristics of, 22
inclusion versus exclusion of, 222–223, 235, 323
nicotine patches, 377
Northern California Twin Registry, 539, 540
novelty seeking, 155–156, 199, 348–349
by adolescents, 27
nasal spray use in, 373
neural incentive system association with, 346
in substance use, 292–293, 348–349
NPKO (Nicotine Pharmacokinetics Ontology), 539
NRT (nicotine replacement therapy), 406. See also smoking cessation
NRXN1 gene, 43
NRXN3 gene, 43
nutritional cancer prevention, 497
observed variables, in structural equation modeling, 248
occurrent, 541, 559
oddball stimulus, 429
olanzapine, 456
ontologies, 539–541
definition of, 541, 559
development process, 560–562
discussion of, 570–574
methods, 541–543, 550–562
nicotine metabolism, 562–569
statistical approaches, 543–550
Ontology Web Language (OWL), 561
Open Biomedical Ontologies (OBO), 560
Open Source software, 561
OPRM1 gene, 409
coding for, 408
gender differences in, 419
in nicotine replacement therapy, 407
in smokers, 423
support interval proximity, 42
oral administration, 147–149, 172, 412–413
oral mucosa exposure to nicotine, 148
ordinal data, analytical framework for, 247, 255
osmotic minipump, 147
outcomes of dependence, 75
outliers, controlling for, 281
OWL (Ontology Web Language), 561
oxotremorine, 166–167

P
P3 amplitude, 294
panic disorder, 353
PANTHER Pathways databases, 556, 561
parent(s)
educational level of, 519
twin studies extended to, 251, 262, 279, 280
parental monitoring, as smoking counterforce, 22
parental smoking
adolescent smoking and, 196–197, 200, 262, 346
behavioral modeling of, 246
nasal spray non-response, 377
smoke-free home with, 523
socialization effects from, 517
parenting behavior, 342
partition behavior, 270, 280
passive avoidance, 435
partition variation, 270, 280
passive avoidance, 435
patch. See nicotine patches

O
OBO (Open Biomedical Ontologies), 560
OBO-Edit, 561
OBO Foundry project, 560
OBO Relation Ontology, 561
path diagrams, in structural equation modeling, 248–250
pathogen modeling, 100–101, 103
PATO (Phenotype and Trait Ontology), 560, 571
Pavlovian learning, 158
PBT (problem behavior theory), 198, 292–294, 322
PDAs (personal digital assistants), 525–527
peers
as influence, 100, 346, 517
as smoking predictors, 523
peer smoking, effect on adolescent smoking, 197
penetrance, incomplete, 31
peripheral nervous system (PNS), 344, 348
P50 ERP, 427–428
persistence
 drug use, 417–418
 negative affect with, 447
 smoking (See smoking persistence)
personal digital assistants (PDAs), 525–527
personalized health care, 49–50
person factors, 97–99
PET (positron emission tomography), 439
P300 event-related potential (ERP), 359–360, 429–430
P450 genotype, 39
pharmacokinetics, 37, 39, 118, 149, 542, 590
pharmacokinetics ontology, 539, 561, 571
phenotype(s)
 assays, 83
 association of, 33
 behavioral, 171, 492
 characteristics of, 109
 components, 341
 developmental progression of, 74
effects of variables on, 553
as endophenotypes, 5, 33–34
environmental, 34–36
framework, 27–31
 genetic mapping, 96–103
 genetic variants to, 102
genotyping and, 560–562
 heterogeneity, 341
 intermediate, 341, 342 (See also endophenotypes)
of mouse strains, 150
 pathways, 23, 590
 as points in smoking trajectory, 490
 research pitfalls, 489
 stages, 109
substance-use disorders, 316–318, 321, 324
Phenotype and Trait Ontology (PATO), 560, 571
phenotype modeling, 487, 488–492
 examples, 493–503
 methods, 492–494
 summary, 503–505
phenotypic assortative mating, 251
phenotypic cultural transmission, 251
phenotypic research, 105–106
 analytic strategies, 113–118
causal paths, 107–110, 111–113
caveats, 110–111
 summary, 118–119
phenylthiocarbamide (PTC) haplotype, 84
phosphatase and tensin homolog (PTEN) gene, 269
physical aggression, 357
physical responses to nicotine, 169
 symptoms, 26
 in tolerance, 162–163, 164–165
physiological measures of response reward, 351
physiological startle. See startle response
physiology
 of affect, 377–378
 of behavioral traits, 344, 345, 346
Pittsburgh Youth Study, 214
placebo, versus nicotine, 369–370, 420
placenta, 145
plasma nicotine levels
 with IV injection, 146
 tissue nicotine levels compared with, 145
 in tolerance studies, 163–164
pleiotropy, 32, 47–50
PNS (peripheral nervous system), 344, 348
point mutation, 444
policy interventions, 34–35
polymorphisms, 553–554. See also single nucleotide polymorphism
 associations with, 116
different priors for, 571
in dopamine reward pathway, 342
emphasis within genes, 547
investigation of, 546–547
numerous, challenges of, 546–547
perturbations from, 554
trait variation effect of, 549
PolyPhen (polymorphism phenotyping), 554
polysubstance use, 43, 296
population
 frequency of genetic factors in, 86
for growth curve modeling, 216–217, 234
homogeneous, assumption of, 248
in latent class analysis, 256
response distribution in, 370, 373, 376–380
in structural equation modeling, 248–249
population heterogeneity, 217
estimating, 218, 221–222
Positive and Negative Affect Schedule, 374–375, 446
positron emission tomography (PET), 439
postural hypotension, 449
PPI (prepulse inhibition), 378, 403, 430–432
preclinical research. See also animal studies; mouse models
affective regulation, 443–444
electrophysiological measures, 425–426
event-related potential, 427–428
impulsivity, 449–450
reinforcement, 410
rewards, 421–423
precursors, class III phenotypes as, 30
predictive validity
of genetic testing, 50
of primary motives scales, 90–91
pre-exposure risk, 339, 340. See also smoking initiation and progression risk endophenotypes, 340–347
future research directions, 381–385
initial sensitivity endophenotypes (See initial sensitivity)
preproenkephalin knockout mice, 160, 422
prepulse inhibition (PPI), 378, 403, 430–432
price-demand curve, 417
pricing, of tobacco products, 20, 21, 520
primary motive scales, as predictors, 90–93
prior covariate specification, 570–571
prior knowledge, ontologies and, 553–562
PR (progressive ratio) measures, 417–418, 420, 454
probability discounting, 450–451
problem behavior theory (PBT), 198, 292–294, 322
problem use, 196, 198, 263, 294
Profile of Mood States, 374–375, 446
programmed lapse procedure, 454
progression to smoking, 491
progressive ratio (PR) measures, 417–418, 420, 454
Project on Human Development in Chicago Neighborhoods, 520
“proof of concept” analyses, 493, 494
protective factors
in adolescents, 343
versus vulnerabilities, 87, 114
protein sequence data, 561
protobacco advertising, 7, 20, 30, 348
prototypes, of nicotine-dependence research, 27–28
proximal indicators, 509
proximal influence, 519–522
proximal measures
versus distal measures, 516
of social context, 518–527
psychiatric comorbidity, 81, 98–99
with DSM-IV dependence, 26, 81
empirical examples of, 496, 502
resolving, 115
psychiatric genetics research, 25, 27
psychophysiological responses to acute stressors, 448–449
psychosocial factors
in adolescent nicotine dependence, 195
in adolescent smoking initiation, 200, 202, 211
PTC (phenylthiocarbamide) haplotype, 84
PTEN gene, 269
public health messages, 47
public health outcomes, 492
public settings, smoking in, 4, 20–21
putative endophenotypes, 341
Q
QSU (Questionnaire on Smoking Urges), 439
QTL (quantitative trait locus), 258
quantitative genetic models, 512, 522
quantitative trait locus (QTL), 258
quantity smoked measures, 28
Questionnaire on Smoking Urges (QSU), 439
racial background, 439. See also African Americans
racism, associated with genetic information, 47
random effects, 216
within-class, 220–221, 233
rapid-decision context, 358
Rapid Visual Information Processing (RVIP) task, 433
rat models
adolescent nicotine exposure in, 194–195
alcohol/nicotine correlation, 369
conditioned place preference in, 423
self-administration of electrical stimulation, 421
sensitivity in, 364
strains, 411 (See also specific strain)
Reactome, 561
real-time contexts, 526
real-time interaction, 524–525
recall, 379
receptor heterogeneity, 139
recovery, from acute tolerance, 162
regression models, 248, 542, 550–551, 572
regular smoking
definition of, 29
genetic factors in, 29–30
alternative, 417
in cognitive control, 349
enhancing, 413
genetic influences in, 418
in initial sensitivity, 368–372
measurement of, 414–420
motivational mechanisms, 410–420
secondary, 411, 413
relapse
environmental influences in, 95
physiological basis of, 588
predictors of, 77, 413, 434, 442, 444–445
time to first cigarette as predictor of, 80, 89
relations between entities, 541, 559, 560
relative measurements, 571
reliability. See also test-retest reliability
of developmental trajectory research, 234
of nicotine-dependence measures, 26, 79–80
recall, 26–27
reliability coefficients, 79
religiosity, adolescent smoking and, 198
repeated-measures data, developmental trajectories, 215, 222
replication, of gene-nicotine dependence associations, 45–46
research findings, communication of, issues in, 45–50
research limitations
adolescent smoking, 367
adult smoking phenotype, 190
ATBC analysis, 497, 504
behavioral measures, 104
cue-induced craving, 456
data, 572
distal measures, 103
DSM, 103
extreme groups, 114–116
methodology, 366–368, 376, 383–384
NHANES III analysis, 503–505
nicotine-dependence measures, 103–104
Nicotine Dependence Syndrome Scale, 84
retrospective reporting, 367
self-report measures, 367
smoking cessation research, 454–455
statistics modeling, 570
tobacco dependence assessments, 95
TUS-CPS analysis, 500, 504
twin studies, 279–280
Wisconsin Inventory of Smoking Dependence Motives, 85–86
residual familial factors (F), 258
residual item variances, 270
respiratory sinus arrhythmia (RSA), 361
response inhibition, 358–359
resting EEG activity, 425–427
retail tobacco outlets, 520, 521
retrospective reporting limitations, 367
reward, 157–161
definition of, 349
for depressed smokers, 352
future research directions, 454–455
immediacy over magnitude, 348, 349
in initial sensitivity, 372–373
modulation of, 160
motivational mechanisms, 420–424
mu opioid receptor mediation, 419
preclinical studies, 157–161, 372–373, 421–423
signaling, 350
reward and pleasure pathways, 22
reward-discounting tasks, 350
rimonabant, 160
risk. See also pre-exposure risk; smoking initiation and progression risk
age-specific, measurement of, 35
approach-related, 339, 346–349, 362
avoidance-related, 339, 351–354, 362
control-related, 339, 354–357, 362
cumulative, measurement of, 35
disease, 541, 550
with nicotine dependence, 375–376
nicotine metabolism and, 22, 342
risk factors
adolescent smoking initiation, 211–212, 232, 350, 433
substance use, 306, 340
risk-taking behavior, by adolescents, 195, 199
RNA analysis, 142
rodent models. See also mouse models; rat models; specific strain
adolescent nicotine exposure, 194–195
adolescent sensitivity, 371
intravenous self-administration, 410
nicotine effects, 368, 435
strain-specific differences, 418
RSA (respiratory sinus arrhythmia), 361
*RS578776 subunit gene, 43
*RS16969968 subunit gene, 43
Russell, M.A.H., 24
RVIP (Rapid Visual Information Processing) task, 433

S
saccharin, 148, 154, 159
S allele, 112, 113
sample size/followup
in ATBC analysis, 497
for developmental trajectory research, 234
in TUS-CPS analysis, 498
saturated model, 547
SBML (Systems Biology Markup Language), 561
schizophrenia, 428, 443
secondary criteria of nicotine dependence, 76, 77
secondary motives scales, 92–93
secondary reinforcement, 411, 413
secondhand smoke, 20, 246
second-stage mixture model, 572
self-administration
ad libitum (ad lib), 415–416, 419
genetic effects on, 146
intravenous, 146, 156–157, 410–412
oral, 412–413
self-control, in children, 344
self-insuring firms, 49
self-report measures
of affect, 446–447
components of, 79
of craving, 439–440
ecological momentary assessment in, 525
limitations of, 367
SEM. See structural equation modeling
semi-Bayes approach, 549
semistructured paradigms, 524
Sensation Seeking Scale, 377
sensitivity
of measurements, 341
modeling, 363–364, 364
periodic, 96
sensitivity analysis, 570
sensory measures, 403
Sensory Questionnaire, 423
sequential process model, of substance-use comorbidity, 304
serotonin
association analysis, 268–269
genetic variation in, 343
metabolism of, monoamine oxidase in, 353
regulation of, 540
smoking cessation and, 407
SES. See socioeconomic status
seven-point Likert scale, 372
shared environment effects
in adolescent smoking, 197, 260–261, 264, 280
twin studies, 251, 280
Shiffman-Jarvik Withdrawal Scale, 440
Shiffman Nicotine Dependence Syndrome Scale. See Nicotine Dependence Syndrome Scale
sibling(s)
IBD configurations for, 257–258
smoking epochs of, 531
as smoking predictors, 523
socialization studies, 517
twin studies extended to, 251, 262, 279, 280
Sibling Partners Study, 526
sickle cell discrimination, 47
side effects
from drinking-water administration, 172
from intravenous administration, 146
SIFT (Sorting Intolerant From Tolerant) procedure, 554
simultaneous effect of genes, 32–33
single-factor dependence, 79n
single-factor structure, 81
single-group growth curve model, 219
single nucleotide polymorphism (SNP) candidate gene variants, 25
disease association with, 544
genotyping, 43, 257–259
nonsynonymous coding, 554
as reflection of underlying effects, 546
relationships over candidate genes, 545
relevance of, 570
in whole-genome research, 4
situational dependence, 27
six-class solution, example of, 227–228
skin conductance, 354, 377–378
skin temperature, 440
SLC6A3 gene, 198
SLC6A4 gene, 32, 101, 112, 113
sleep problems, in children, 357
slope
distribution of, 219
factor loading and, 275–276
in latent growth curve models, 254, 306, 310
129S6 mice, 430
SMOFAM (Smoking in Families Study), 267
smoke-free laws, 520
smoke-free settings, 20, 30, 523
smokeless tobacco, 147
smokers, characteristics of, 22
smoking bans on, 99
decline in, 20
developmental phenotypes (See adolescent developmental trajectories)
first experience with (See initial sensitivity)
frequency of, 369–371, 413, 420
during illness, 79, 80
nicotine dependence compared with, 87
quantitative genetic model and, 512
status, 28
transition levels, 42–43, 488–490
smoking cessation
age-related changes in, 170
barriers to, 4–5, 46
CHRN2 gene in, 407
commercial testing, 50
comparison groups changes, 493
data sets in, 493–494, 494
definition of, 492
delay discounting factor in, 350
demand for, 21
difficulties of, 97
drugs for, 160
failures in, 44–45
FTND predictions of, 80
future research directions, 454
gender differences in, 38
heritability in, 406
monoamine oxidase decrease during, 351
research limitations in, 454–455
serotonin pathway and, 407
subthreshold pretreatments, 162
success predictors, 81, 89, 413, 434
symptoms of, 447
tailored, 48
smoking index variable, 30
Smoking in Families Study (SMOFAM), 267
smoking initiation, 31, 42
adolescent (See adolescent smoking initiation)
assessment of, age effects in, 279, 322
definition of, 29
gender differences in, 267
linkage analysis of, 267
versus persistence, 406
smoking initiation and progression risk, 346, 491.
See also pre-exposure risk
approach-related, 346–349
avoidance-related, 351–353
control-related, 354–357
endophenotypic measures, 349–351, 353–354, 357–362
future research directions, 362–363
smoking level
measurement of, example of, 224–225
substance-use comorbidity and, 308, 322
smoking pattern, factor analysis of, 265
smoking persistence, 29, 30, 406
definition of, 29
eyear-onset smokers’ risk for, 200, 212–213, 230–231
smoking topography devices, 415, 418
SNP. See single nucleotide polymorphism
social context, 509, 510–511
adolescent smoking, 193, 198
behavioral genetics in, 514–518
future research directions, 527–532
proximal measures of, 518–527
rationale for, 511–514
substance use, 294–295
social development model, 293
socioeconomic status (SES)
 adolescent smoking and, 232
distal to proximal influence, 519–522
 of hard-core smokers, 35
nuanced approaches to, 519–520
socioregional influences, 515–516
“softening” of smoking, 193
software
 association analysis, 259
 item response theory, 270
 linkage analysis, 258
 ontology, 561, 562
Sorting Intolerant From Tolerant (SIFT) procedure, 554
SourceForge Web site, 562
species-specific responses, 134
specific-factor models, of substance use, 306–307, 315–316
speed congenics, 151
spinal cord minipumps, 163
spouses, socialization effects from, 517
Sprague-Dawley rats, 411, 431, 432–433
stage models, developmental trajectories, 233
startle-probe measures, 113
startle response
 as affective response, 447–448
 in humans, 377
 increases in, 444
 prepulse inhibition of, 378, 403, 430–432
 test-retest reliability of, 446–447
state laws, against genetic discrimination, 49
static clustering, versus dynamic clustering, 219–220, 232
statistics
 approaches to, 543–550
 combining genetic studies with, 248
 developmental phenotypes, 214–231
 modeling, 248–259, 570
 ontological knowledge in, 572
ST/b inbred mice, 154, 155, 412–413
stem cells, 151
Sternberg Memory Task, 379, 436–437
stigma, nicotine dependence as, 46–47
stochastic variable selection
 hierarchical modeling and, 547–548, 572, 573
 model selection with, 549–550, 551–552
stop-go task, 359
strain-specific differences
 aging, 170
conditioned place preference, 158
DNA markers, 151
five choice serial reaction time task, 432–433
genetic, 150
mouse models, 153–154, 164–165, 412–413
nicotine effects of, 135, 161, 169, 418
nicotinic acetylcholine receptors, 172
rat models, 411
tolerance, 164
unraveling of, 142
strain surveys, 422
stress, 351
 as influence, 100
 influences on, 36
 neuroendocrine response to, 354
 response mediators, 143
Stroop interference task, 379, 440, 451, 452
Stroop paradigm, 113
structural equation modeling (SEM), 248–249
 combined with latent class models, 256
 of developmental trajectories, 215
 linkage analysis and, 257–258
 for twin data, 249–257
study participants, selection of, 490–492
subcutaneous administration, 147, 172
subpopulation
 in latent class analysis, 256
 in structural equation modeling, 248–249
subPSEC (substitution position-specific evolutionary conservation), 554
substance use. See also specific substance
 adolescent, shared environmental influences in, 261
 age-dependent vulnerability to, 195, 198, 200–201, 212, 233–234, 292–293
 attention deficit hyperactivity disorder in, 356
dopamine in, 410, 588
 early pleasurable use, 374
 environmental factors influencing, 294–295
 interpersonal dynamics in, 522
 Iowa gambling task as predictor, 350
 modeling of, 43
 nasal spray non-response, 377
 novelty seeking in, 292–293, 348–349
 prevention of, research approaches, 294–295
 risk factors for, 340
specific-factor models, 306–307, 315–316
Index

substance-use comorbidity, 289–325
 association between smoking trajectories and, 296–298
 empirical examples of, 307–323, 496, 502
 future research directions, 323–324
 gender differences in, 304
 gene-environment interactions in, 320
 importance of studying, 290–292
 informative phenotypes for, 316–318, 321, 324
 literature review, 295–296
 mechanisms underlying, 291–292
 methodological issues, 321–323
 modeling, 298–307
 risk factors, 306
 two-stage models of, 323
substance-use disorders
 common versus specific liability to, 292–295
 diagnosis of, 291
 shared genetic risk for, 294
substitution position-specific evolutionary conservation (subPSEC), 554
subthreshold depression, 352
sucrose, 154–155, 412
support interval, 40, 42
Surgeon General’s Report (1964), 24
Surgeon General’s Report (1979), 24
susceptibility loci mapping, 24. See also candidate gene studies
sweat gland activity, 440
Swedish Twin Registry, 515
Swiss mice, 435
Swiss-Webster mice, 158, 161
switching, between trajectory groups, 255–256
systems biology, genetic association studies and, 554, 556–559
Systems Biology Markup Language (SBML), 561
diagnostic tools, 81
event-related potential, 429
mood effects tests, 375
nicotine-dependence measures, 26–27, 29
prepulse inhibition startle response, 431
thapsigargin, 167
theta rhythm (slow-wave activity), 362
TH (tyrosine hydroxylase) gene, 198–199, 269
threshold factor loading and, 275–276
as “smoker,” 42
time to first cigarette (TTFC)
 during adolescence, as indicator of adult nicotine dependence, 230–231
 correlations with, 90
 factor analysis of, 88–89
 nicotine metabolism association, 34
 as physical dependence measure, 79
 as quitting predictor, 80
time to maximum tolerance, 162
tissue levels of nicotine, versus plasma levels, 145
Tobacco Craving Questionnaire, 440
tobacco dependence, versus nicotine dependence, 75
tobacco industry, 24
tobacco policies, 7, 20
 effect on adolescent smoking, 193
 substance use policies and, 294–295
tobacco settlement dollars, 4
tobacco use. See also nicotine
 frequency of, 4, 21, 369–371, 413, 420
 history of, 27–28
 smoke compounds, 588
tolerance, 162–168
 genetic effects on, 146
 to repeated doses, 158
Tolerance subscale, 90–91
TPH gene, 269
trace fear conditioning, 435
transcription factor CREB, 160–161, 422
transcription factor Fosb, 161
transcription levels, alterations in, 40
transdisciplinary framework, 521
Transdisciplinary Tobacco Use Research Center (TTURC), 89, 521, 526
transitional endophenotypes, 107, 108, 200, 233
translational validation, 172
T

targeted treatment, 21–22
task performance, with nicotine deprivation, 436
Taste/Sensory Processes subscale, 84
taxon, nicotine dependence as, 93–94
team sports, as protective factor, 343
temperament-based model, 343–344
test performance, definition of, 75
test-retest reliability
 acoustic startle reflex, 446–447
 ad lib smoking, 415
TRPC7 gene, 43
129T2/SvEmsJ mice, 431
TTFC. See time to first cigarette
TTURC (Transdisciplinary Tobacco Use Research Center), 89, 521, 526

Twin studies. See also specific study
adolescent smoking, 196, 259–262
affective regulation, 446–447
cross-substance concordance, 317, 319–320
CYP2A6 effect, 40
delay aversion, 351
ecological momentary assessment, 527
epigenetic regulation, 36
equal environments assumption in, 516–517
event-related potential, 428, 429
extended family, 250–252, 262, 279, 280
factor analysis, 88–89
factor mixture models, 256
genomic studies, 589
heritability of dependence, 28–29, 86, 342, 406
impulsivity, 451
limitations of, 279–280
multivariate, 252–253, 262–263
P300 amplitude, 360
prepulse inhibition startle response, 431
resting EEG, 426
smoking habits, 22, 24
smoking initiation, 31
structural equation modeling, 249–257
substance-use comorbidity, 307–323, 324
tobacco use history, 38–39
working memory, 437
two-factor structure, 81
two-stage genetic models, initiation versus progression, 323
tyrosine hydroxylase (TH) gene, 198–199, 269

Univariate analysis, substance-use comorbidity, 322
unmeasured genetic factors, 4, 511
upregulation, of nicotinic receptors, 135, 144–145, 588
U.S. Task Force on Community Preventive Services, 4

validity
of developmental trajectory research, 234
discriminative, 77
predictive, 50, 90–91
variables
independent, 495–496, 498–499
observable, 77
ontologies to represent knowledge about, 558–559
perturbations from, 554
in structural equation modeling, 248
variance
in latent growth curve models, 254
partitioning, 270, 280
ventral tegmental area (VTA), 152–153, 588
verapamil, 167, 168
VET (Vietnam Era Twin) Registry, 263–264
videotaped paradigms, 524
Vietnam Era Twin (VET) Registry, 263–264
vigilance, 432–434
Virginia 30,000 Study, 262
Virginia Twin Registry, 264, 269–279
measures, 269–270
methods, 270
results, 270–276
study conclusions, 276–279
subjects, 269
Virginia Twin Study of Adolescent Behavioral Development, 260
visuospatial attention, 434
VLMR LR (Vuong-Lo-Mendell-Rubin likelihood ratio) test, 310, 312
VTA (ventral tegmental area), 152–153, 588
vulnerability
of adolescents, 343
differences in, 22
modeling, 363–364
protective factors, 87, 114
Vuong-Lo-Mendell-Rubin likelihood ratio (VLMR LR) test, 310, 312

Wald test, 544
watershed model, 78–79, 81–82
WCST (Wisconsin Card Sorting Test), 378, 436
Wechsler Adult Intelligence Test-Revised, 433
whole-environment scan, 530
whole-genome association studies, 4
whole-genome linkage scans, 589
whole-genome quantitative transcript screening, 170
wild-type mice
 conditioned place preference in, 159, 160, 161, 422
 in CREB activation studies, 160
 in nicotine reinforcement, 159
WinBUGS, 549
Wisconsin Card Sorting Test (WCST), 378, 436
Wisconsin Inventory of Smoking Dependence Motives (WISDM), 84–86, 85
 as assessment tool, 405
 subscales of, 90–93
Wistar rats, 425, 431, 449
withdrawal symptoms
 in adolescents, 192, 194
 cellular changes, 147
 environmental influences in, 95
 heritability of, 30
 negative affect, 443
 physical dependence inference from, 77
 physiology of, 588
 severity of, 97, 413, 447
 support interval for, 40
 within-class variability, estimation of, 220–221, 233
working memory, 434–438
World Health Organization, 80–81
World Mental Health Survey Initiative, 81

X
XSEM (extended structural equation modeling), 249

Z
zygosity, function of, in substance-use phenotypes, 316–317, 320