What is Mendelian Randomization and How Can it be Used as a Tool for Medicine and Public Health? Opportunities and Challenges

George Davey Smith
MRC Integrative Epidemiology Unit
University of Bristol

(@mendel_random)
Outline

• Mendelian randomization outline
• Instrumental variables assumptions
• Heterogeneity and sensitivity analyses for assumption violation, including horizontal pleiotropy
• MR with interactions for estimation and checking violations
• MR and disease liability
Conventional observational epidemiology

- Confounders and/or Reverse causation
- Modifiable exposure (e.g. cholesterol)
- Outcome (e.g. CHD)
Conventional observational epidemiology

It is often impossible to exclude confounding and/or reverse causation as an explanation for observed exposure/outcome associations.
Mendelian randomization approach

It is often impossible to exclude confounding and/or reverse causation as an explanation for observed exposure/outcome associations.
Mendelian randomization approach

Confounders
and/or
Reverse causation

Instrumental variable
(Genetic variant e.g. SNP in LDLR gene)

Modifiable exposure
(e.g. cholesterol)

Outcome
(e.g. CHD)
Mendelian randomization approach

Instrumental variable (Genetic variant e.g. SNP in LDLR gene) → Modifiable exposure (e.g. cholesterol) → Outcome (e.g. CHD) → Confounders and/or Reverse causation
Mendelian randomization approach

- **Diet, cholesterol lowering medication, etc**
- **Instrumental variable (Genetic variant e.g. SNP in LDLR gene)**
- **Modifiable exposure (e.g. cholesterol)**
- **Outcomes (e.g. CHD)**
- **Confounders and/or Reverse causation**
Mendelian randomisation reflects the phenocopy / genocopy dialectic

e.g. Hartnup’s syndrome and pellagra

“no doubt all environmental effects can be mimicked by one or several mutations”
(Zuckerkandl and Villet, PNAS 1988)

Mendelian randomization: and improving causal inference regarding prevention or treatment of disease

Traits inherited independent of each other & future environmental factors

Instrumental variable, G → Modifiable exposure, X → Outcome, Y

Nature’s RCT
Free from confounding & reverse causation

Selecting genetically supported targets doubles success at 25% lower costs
Mendelian randomization estimate of the effect of raising selenium on prostate cancer risk

Mendelian randomization estimate of the effect of raising selenium on prostate cancer risk

Random allocation in a trial
- Placebo
- Se suppl
 - Plasma selenium (baseline)
 - Plasma selenium (+1.27umol/l)
- Prostate cancer risk (per 1.27 umol/l):
 RR = 1.04 (CI: 0.87, 1.24)

Random assortment of alleles at conception: SNP linked to Se
- CC
 - Plasma selenium (baseline)
 - Plasma selenium (+0.5umol/l)
- TT

Effect of Selenium and Vitamin E on risk of prostate cancer and other cancers; The Selenium and Vitamin E Cancer Prevention Trial (SELECT)
JAMA 2009;301(1):39-51. 35,533 men
Mendelian randomization estimate of the effect of raising selenium on prostate cancer risk

Random allocation in a trial

- Placebo
- Se supp

Plasma selenium (baseline)
Plasma selenium (+1.27umol/l)

Prostate cancer risk (per 1.27 umol/l): RR = 1.04 (CI: 0.87, 1.24)

Random assortment of alleles at conception: SNP linked to Se

- CC
- TT

Plasma selenium (baseline)
Plasma selenium (+0.5umol/l)

Prostate cancer risk (per 1.27 umol/l): RR = 1.05 (CI: 0.90, 1.22)

22,000 cases and 22,000 controls from 22 studies in PRACTICAL
2 sample method

GWAS top hits used to instrument exposure

Extract selected SNPs from complete summary data of outcome GWAS

<table>
<thead>
<tr>
<th>SNP</th>
<th>Effect</th>
<th>Effect allele</th>
<th>Other allele</th>
<th>Effect allele frequency</th>
<th>SNP</th>
<th>Effect</th>
<th>Effect allele</th>
<th>Other allele</th>
<th>Effect allele frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs123456</td>
<td>0.132</td>
<td>A</td>
<td>G</td>
<td>0.28</td>
<td>rs123456</td>
<td>0.022</td>
<td>A</td>
<td>G</td>
<td>0.26</td>
</tr>
<tr>
<td>rs234567</td>
<td>-0.485</td>
<td>G</td>
<td>T</td>
<td>0.41</td>
<td>rs234567</td>
<td>-0.056</td>
<td>G</td>
<td>T</td>
<td>0.39</td>
</tr>
<tr>
<td>rs345678</td>
<td>0.203</td>
<td>G</td>
<td>C</td>
<td>0.11</td>
<td>rs345678</td>
<td>0.046</td>
<td>G</td>
<td>C</td>
<td>0.12</td>
</tr>
</tbody>
</table>
A genetic variant is a valid instrumental variable if the following assumptions hold:

- **IV1**: The genetic variant is associated with the exposure X ("relevance")
- **IV2**: The genetic variant is independent of confounders U ("exchangeability")
- **IV3**: The genetic variant is independent of the outcome Y conditional on the exposure X (and confounders U) ("exclusion restriction")
Do not condition on the intermediate phenotype
DO NOT CONDITION ON THE INTERMEDIATE PHENOTYPE
PLEASE DO NOT CONDITION ON THE INTERMEDIATE PHENOTYPE
MR and mediation

The IV assumptions necessary for MR are essentially the same as saying there is complete mediation of the effect of the genetic variant on the outcome by the intermediate phenotype / exposure of interest.
In generating IV effect estimates

IV assumption 4 (in one of its varieties)
• Homogeneity of exposure effect on outcome
 (allowing population average exposure effect to be estimated)
OR
• Monotonicity of instrument effects on exposure
 (allowing complier average exposure effect to be estimated)
OR
• No interaction between G and U with respect to X
Can we interrogate IV4(h), IV4(m) and IV4(NI)?

Examine the variance of exposure and outcome by genotype (for continuous exposures or outcomes). If there is non-homogeneity or non-monotonicity violation there should be increased variance in the “treatment” genotype (whatever you consider the treatment allele: the basic inference is to there being some difference between genotypes)
The point has, I think, received the rather large amount of theoretical attention that it has chiefly through lack of contact with the practical experimental situation

RA Fisher to HE Daniels, 18th February 1938
Identifying loci affecting trait variability and detecting interactions in genome-wide association studies

Alexander I. Young¹,²*, Fabian L. Wauthier¹,³ and Peter Donnelly⁶¹,³*

Identification of genetic variants with effects on trait variability can provide insights into the biological mechanisms that control variation and can identify potential interactions. We propose a two-degree-of-freedom test for jointly testing mean and variance effects to identify such variants. We implement the test in a linear mixed model, for which we provide an efficient algorithm and software. To focus on biologically interesting settings, we develop a test for dispersion effects, that is, variance effects not driven solely by mean effects when the trait distribution is non-normal. We apply our approach to body mass index in the subsample of the UK Biobank population with British ancestry (n=408,000) and show that our approach can increase the power to detect associated loci. We identify and replicate novel associations with significant variance effects that cannot be explained by the non-normality of body mass index, and we provide suggestive evidence for a connection between leptin levels and body mass index variability.

Nearly all genome-wide association study (GWAS) associations have been discovered by testing the simplest additive model¹. A long-standing controversy exists about the importance of departures from the additive model in human genetics². In addition, the extent and nature of interactions between genetic variants and environmental factors remains poorly characterized. The advent of large population-based cohorts, such as the UK Biobank¹, provides large samples of genotyped individuals along with rich lifestyle and algorithms that scale cubically with sample size³⁴, making them impractical to apply to the large sample sizes needed to detect variance effects on complex human traits.

Here we introduce a two-degree-of-freedom test for jointly testing mean and variance effects on quantitative traits. If the trait distribution is non-normal, then additive effects at a locus will induce variance effects that are unlikely to be of interest. We show how to account for this and thereby detect variance effects not driven by

Interpreting IV estimates

- All of the IV assumptions ...

Interpreting IV estimates

• All of the IV assumptions ...
• May indicate lifetime exposure effect (need measures of SNP-exposure across life)

Interpreting IV estimates

• All of the IV assumptions ...

• May indicate lifetime exposure effect (need measures of SNP-exposure across life)

• May relate only to exposure during critical period

Interpreting IV estimates

- All of the IV assumptions ...
- May indicate lifetime exposure effect (need measures of SNP-exposure across life)
- May relate only to exposure during critical period
- May relate to unmeasured upstream phenotype – e.g. in the case of enzyme activity

Interpreting IV estimates

• All of the IV assumptions ...
• May indicate lifetime exposure effect (need measures of SNP-exposure across life)
• May relate only to exposure during critical period
• May relate to unmeasured upstream phenotype – e.g. in the case of enzyme activity
• May only be interpretable in terms of liability to the “exposure”, not the exposure itself

Interpreting IV estimates

• All of the IV assumptions ...

• May indicate lifetime exposure effect (need measures of SNP-exposure across life)

• May relate only to exposure during critical period

• May relate to unmeasured upstream phenotype – e.g. in the case of enzyme activity

• May only be interpretable in terms of liability to the “exposure”, not the exposure itself

• Generally relates to disease occurrence, not outcome

So .. why generate IV estimates?

- Necessary for most of the sensitivity analyses / extensions of MR analyses
- Comparison of IV estimates and what is observed in trials can help inform about relative immediacy of treatment effects
- In some cases (e.g. smoking during pregnancy) can be interpreted as the effect of an exposure in a particular period
Limitations of Mendelian Randomization

- Reintroduced confounding through horizontal pleiotropy
Effect of nine SNPs from six genes on LDL cholesterol and on CHD risk

Invited Commentary: Detecting Individual and Global Horizontal Pleiotropy in Mendelian Randomization—A Job for the Humble Heterogeneity Statistic?

Jack Bowden*, Gibran Hemani, and George Davey Smith

* Correspondence to Dr. Jack Bowden, MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol BS8 2BN, United Kingdom (e-mail: jack.bowden@bristol.ac.uk).

Initially submitted June 22, 2018; accepted for publication July 25, 2018.

Mendelian randomization (MR) is gaining in recognition and popularity as a method for strengthening causal inference in epidemiology by utilizing genetic variants as instrumental variables. Concurrently with the explosion in empirical MR studies, there has been the steady production of new approaches for MR analysis. The recently proposed “global and individual tests for direct effects” (GLIDE) approach fits into a family of methods that aim to detect horizontal pleiotropy—at the individual single nucleotide polymorphism level and at the global level—and to adjust the analysis by removing outlying single nucleotide polymorphisms. In this commentary, we explain how existing methods can (and indeed are) being used to detect pleiotropy at the individual and global levels, although not explicitly using this terminology. By doing so, we show that the true comparator for GLIDE is not MR-Egger regression (as Dai et al., the authors of the accompanying article (Am J Epidemiol. 2018;000(00):000–000), claim) but rather the humble heterogeneity statistic.

heterogeneity statistic; horizontal pleiotropy; Mendelian randomization; MR-Egger regression; outlier detection
MR-Egger

MR-Egger

Requires Instrument Strength Independent of Direct Effect (InSIDE) assumption

More arriving all the time ..

- Weighted median (Bowden et al, Genet Epidemiol 2016)
- Weighted mode (Hartwig et al, Int J Epidemiol 2017)
- Constrained instrumental variables (Jiang, bioRxiv 2017)
- MR-PRESSO (Verbanck et al, Nature Genetics, 2018)
- MR-RAPS (Zhao et al, arXiv, 2018)
- Adaptive Lasso (Windmeijer et al, JASA 2018)
- MR-MIX (Qi et al, bioRxiv 2018)
- Etc
- Etc

Hemani G et al. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Human Molecular Genetics 2018;27:R195–R208,
GxE in an exposure propensity example: how does alcohol intake influence the risk of disease?
Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: population based cohort study using linked health records

Steven Bell,1,2 Marina Daskalopoulou,3 Eleni Rapsomaniki,4 Julie George,4 Annie Britton,2 Martin Bobak,2 Juan P Casas,4 Caroline E Dale,4 Spiros Denaxas,4 Anoop D Shah,4 Harry Hemingway4

1Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
2Research Department of Epidemiology and Public Health, University College London, London WC1E 7HB, UK
3Department of Infection and Population Health, University College London, Royal Free Hospital, London NW3 2PF, UK
4Farr Institute of Health Informatics Research (London), University College London, London NW1 2DA, UK

Correspondence to: S Bell scb81@medschl.cam.ac.uk

Additional material is published online only. To view please visit the journal online.

Cite this as: BMJ 2017;356:j909
http://dx.doi.org/10.1136/bmj.j909
Accepted: 1 February 2017

ABSTRACT
OBJECTIVES
To investigate the association between alcohol consumption and cardiovascular disease at higher resolution by examining the initial lifetime presentation of 12 cardiac, cerebrovascular, abdominal, or peripheral vascular diseases among five categories of consumption.

DESIGN
Population based cohort study of linked electronic health records covering primary care, hospital admissions, and mortality in 1997-2010 (median follow-up six years).

SETTING
CALIBER (Clinical research using LInked Bespoke studies and Electronic health Records).

PARTICIPANTS
1937 360 adults (51% women), aged ≥30 who were free from cardiovascular disease at baseline.

MAIN OUTCOME MEASURES
12 common symptomatic manifestations of cardiovascular disease, including chronic stable angina, unstable angina, acute myocardial infarction, unheralded coronary heart disease death, heart failure, sudden coronary death/cardiac arrest, transient ischaemic attack, ischaemic stroke, intracerebral and subarachnoid haemorrhage, peripheral arterial disease, and abdominal aortic aneurysm.

RESULTS
114 859 individuals received an incident cardiovascular diagnosis during follow-up. Non-drinking was associated with an increased risk of unstable angina (hazard ratio 1.33, 95% confidence interval 1.21 to 1.45), myocardial infarction (1.32, 1.24 to 1.41), unheralded coronary death (1.56, 1.38 to 1.76), heart failure (1.24, 1.11 to 1.38), ischaemic stroke (1.12, 1.01 to 1.24), peripheral arterial disease (1.22, 1.13 to 1.32), and abdominal aortic aneurysm (1.32, 1.17 to 1.49) compared with moderate drinking (consumption within contemporaneous UK weekly/daily guidelines of 21/3 and 14/2 units for men and women, respectively). Heavy drinking (exceeding guidelines) conferred an increased risk of presenting with unheralded coronary death (1.21, 1.08 to 1.35), heart failure (1.22, 1.08 to 1.37), cardiac arrest (1.50, 1.26 to 1.77), transient ischaemic attack (1.11, 1.02 to 1.37), ischaemic stroke (1.33, 1.09 to 1.63), intracerebral
Moderate drinking can lower risk of heart attack, says study

Drinking in moderation helps protect heart, with study finding it lowers risk of many conditions compared with not drinking.

Authors described study as most comprehensive to date on relationship between alcohol consumption and heart health. Photograph: Hero Images/Getty Images

Moderate drinking can lower the risk of several heart conditions, according to a study that will further fuel the debate about the health implications of alcohol consumption.
Drinking pint of beer a day linked to reduced risk of heart attack

Moderate drinkers less likely than teetotallers and heavy drinkers to see doctor for heart conditions including angina and strokes caused by blood clots

Katie Forster | @katieforster | 11 hours ago | 20 comments
Cheers! Drinkers who have one glass of wine a night 'are at less risk of heart failure than teetotallers'

- Moderate drinking equates to within 14 units of alcohol a week
- This is equivalent to a pint of very weak beer, or two measures of spirits
- Cambridge University researchers believe moderate amounts of alcohol may boost levels of good cholesterol in the blood

Moderate drinking slashes the risk of a heart attack or stroke, a major study reveals today.

Research from 1.9million adults appears to show that the occasional glass of wine or pint of beer may provide a protective effect.

Men and women who drank moderately – within 14 units of alcohol a week – were found to be less at risk of common heart problems than teetotallers.
Drinking alcohol slashes risk of heart problems – if you drink this much per week

BOOZERS rejoice because drinking alcohol can boost your heart health.

By Sarah Buchanan / Published 22nd March 2017

HEART HEALTH: Guzzling a moderate amount of booze can have a beneficial effect
Alcohol Is Good for Your Heart—Most of the Time

Alice Park
Mar 22, 2017

For more, visit TIME Health.
Moderate drinking may cut risk of heart disease

Research links light alcohol consumption with less risk of heart and blood vessel illness

about 12 hours ago

Paul Cullen

A study published in the British Medical Journal looked at the health records of 1.93 million UK adults who were all

Moderate drinking may be good for your heart and even heavy drinking may lower your risk of heart attack, a new study indicates.
Metabolism of alcohol

Ethanol \xrightarrow{ADH} Acetaldehyde \xrightarrow{ALDH} Acetic acid

CYP2E1

* Mainly occurs in the liver, but some activity is also present in the oral cavity and digestive tract
ALDH2 genotype by alcohol consumption, g/day: 5 studies, n=6815

ALDH2 genotype and systolic blood pressure

Effect estimation using interactions

No pleiotropy
Pleiotropy

$E[X|G, Z=b]$
$E[X|G, Z=a]$
$E[X|G, Z=Z_x]$

$E[X|G, Z=Z_x]=0$
$E[X|G, Z=a]$
$E[X|G, Z=b]$

Spiller et al, Int J Epidemiol 2018
Instrumental variable estimates of alcohol intake (g/day) on CVD risk factors, based on ALDH2 by sex interactions

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Beta Coefficient (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>0.202 (0.087, 0.317)</td>
<td>0.001</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>0.100 (0.025, 0.175)</td>
<td>0.009</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>0.038 (-0.197, 0.273)</td>
<td>0.750</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>0.166 (0.098, 0.233)</td>
<td><0.0001</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dL)</td>
<td>-0.362 (-0.578, -0.145)</td>
<td>0.001</td>
</tr>
<tr>
<td>Log-transformed triglycerides (log(mg/dL))</td>
<td>0.003 (0.002, 0.005)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia

Cannabis use is a heritable trait that has been associated with adverse mental health outcomes. In the largest genome-wide association study (GWAS) for lifetime cannabis use to date (N=184,765), we identified eight genome-wide significant independent single nucleotide polymorphisms in six regions. All measured genetic variants combined explained 11% of the variance. Gene-based tests revealed 35 significant genes in 16 regions, and S-PrediXcan analyses showed that 21 genes had different expression levels for cannabis users versus nonusers. The strongest finding across the different analyses was CADM2, which has been associated with substance use and risk-taking. Significant genetic correlations were found with 14 of 25 tested substance use and mental health-related traits, including smoking, alcohol use, schizophrenia and risk-taking. Mendelian randomization analysis showed evidence for a causal positive influence of schizophrenia risk on cannabis use. Overall, our study provides new insights into the etiology of cannabis use and its relation with mental health.
Interpretation of MR studies in which disease A is the apparent exposure.
Approaches to causal inference

Triangulation in aetiological epidemiology

Debbie A Lawlor, Kate Tilling and George Davey Smith

1MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK and 2School of Social and Community Medicine, University of Bristol, Bristol, UK

*Corresponding author. MRC IEU, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. E-mail: d.a.lawlor@bristol.ac.uk

Accepted 3 October 2016
Welcome
The meeting will focus on the development, application and translation of Mendelian randomization methods to a range of fields. We encourage all with an interest in causality, including from social science, clinical sciences, public health, biomedical research, epidemiology, statistics and the pharmaceutical industry to join us and contribute to discussion on new methodologies and wide scale implementation.
Further Reading

- Davies NM et al. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 2018;362:k601