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April 9th 2020
Perspectives on Cancer and Aging Webinar

“Connecting the biological and phenotypic manifestations

of aging: the case of muscle aging”.

Luigi Ferrucci - National Institute on Aging
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The Metrics of Aging

Functional Aging (impact on daily life)

o Cognitive Function
o Physical Function
o Mood

o Mental Health

Phenotypic Aging (phenotypes that change)

o Body Composition

o Energetics

o Homeostatic Mechanisms

o Brain health

Biological Aging (root mechanisms)

o Molecular damage
o Defective repair
o Energy exhaustion

o Signal/noise reduction
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Genomic Instability

The Accumulation of Somatic Mutations with Aging

Cellular Senescence

Trade-off Between Cancer and Aging

Epigenetics (methylation)

The “Epigenetic Clock”

The Hallmarks of Aging
Carlos Lopez-Otin et al.

Mitochondrial Dysfunction

The Power Plant

Proteostasis (autophagy)

Repair, Recycle or Trash?

Telomere Length
Protecting the DNA During Replication

Stem Cell Exhaustion

Templates for Cells Restoration

Cell to Cell Communication

Accuracy and Context in the Flow of Information
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Percent Change Compared to the Average for
the Younger Age Group
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Mid-thigh T1w MRI Images (Men; GESTALT )

Age 23 Years

Age 28 Years

David Reiter

Age 42 Years Age 45 Years
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NESTED CASE-CONTROL STUDY in BLSA

Selection of 79 pairs of cases (low muscle quality) and controls (high muscle quality), matched by age (2.5 years),

sex, and height (£1.5cm). Muscle quality defined as knee extension torque/mid-thigh muscle cross-sectional area.
Moaddel R et al. J Gerontol A Biol Sci Med Sci. March 2016. doi:10.1093/gerona/glw046
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-log(p-value) for (cases<controls) and

NESTED CASE-CONTROL STUDY in BLSA

126 Metabolites according to down-regulation or up-regulation in cases (low

muscle quality) compared to controls (high muscle quality)
Moaddel R et al. J Gerontol A Biol Sci Med Sci. March 2016. doi:10.1093/gerona/glw046
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BCAAs stimulates energy production and protein synthesis

BCAAs

extracellular
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kPCr

KPCr by Age in Men and Women

sex = Men

sex = Women

0057 \pCr=.031-.00015*Age kPCr=.030-.00012*Age
0.04 -
0.03 LS %
0.02 -
0.01 - R*=.10
| I |‘ | | | | | I
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Loess, Smooth=1.2

Figure 1. Skeletal muscle oxidative capacity, a proxy marker of
mitochondrial function, declines with aging both in men (n=400) and
women (n=331). BLSA 2020 limited to first measures.




Muscle Strength Mediates the Effect of Mitochondrial Function on

Walking Performance.

Beta Coefficient
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Classification of Age-associated Proteins In Skeletal Muscle

Proteins associated with Aging

All Proteins
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Classification of Age-associated Proteins In Skeletal Muscle

Proteins associated with Aging Proteins associated with Physical Activity

All Proteins A
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4 Age Associated Protein Categories
Adjusted for Gender, PA, Race, Fiber ratio, BMI and Batch effects

6% /9%
85%
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Hallmarks of Aging

Physical Activity Associated Protein Categories
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Figure 3 Functional Decline of Mitochondrial Proteins with Age
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Figure 4 Implications of Proteins that Modulate Transcription and Splicing

Kelch-like protein 31 (KLHL31)
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Relative Abundance of Spliceosome Proteins in Master Athletes

Compared to Age-Matched Controls
Collaboration with Russel Hepple, PhD (University of Florida)
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Discovery proteomics on muscle biopsies quantified using TMT and LC-MS methods. Overall,
132 spliceosome pathway proteins were quantified. Of these, 122 were underrepresented
in master athletes compared to controls, and for 22 of them the difference was significant.



Adjusting for Age and Physical Activity, Up-Regulation of the Splicing
Machinery is Associated with Better Mitochondrial Function
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3D Reconstructions of FIB-SEM images in 3 different age groups.
Mitochondria are pink, Z-bands are cyan, and voided areas are gray.
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Geroscience anticipates secondary prevention
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DNA Methylation
Landscapes in

Aging & Disease

Morgan Levine
Assistant Professor
Department of Pathology
Yale University School of Medicine




What 1s the biggest risk factor for lung cancer?

Smoking increases lung cancer 1in 200k chance for ages 25-29, nearly
incidence and death by 15 to 30 fold 400 in 100k chance ages 75-79




Geroscience
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Cancer Risk & Age

[s aging causal or consequential in cancer?

The more times you roll the dice
(function of chronological time)
the more likely your chances?




Cancer Risk & Age

Is aging causal or consequential in cancer?

A Conventional model

+ oncogenic event

Fitness

C Adaptive landscapes

WT genotype

Fitness

Young, healthy stem

B Adaptive Oncogenesis

Fitness
+ oncogenic event

i

Young, healthy
stem cell pool

Malignant genotypes

Old or damaged
stem cell pool

Malignant genotypes

cell pool Old or damaged stem cell pool

Adaptive Oncogenesis Model
Dr. James DeGregori

Roughly halt’ of all mutations occur before
tull body maturation

Context matters!
system-level dynamics that change with age
alter the fitness landscape



Biomarkers of Aging

Usetul proxies that estimate aging
(or agedness) of a sample.

Should Answer:
Biologically, what difterentiates
the average 20 year old from the

average 80 year old?

What differentiates a healthy 80
years old from an unhealthy 80

year old?



Epigenetics: Molecular OS

DNA Methylation (DNAm)

Involved in cell proliferation/differentiation, transcriptional

repression, genomic Imprinting, organization of chromatin.

DNAm and Age
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Epigenetic Clocks

Because of the precise age changes,
we can use machine learning to predict “the age”
of a sample based on its DNAm levels.

Independent variable

[ARRRLLTIERRE |




DNAmAge
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Epigenetic Clocks
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Epigenetic Clocks

"Normal (RS

breast, colon, lung, pancreas, thyroid
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EpiAge Acceleration

EpiAge Acceleration
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Epigenetic Clocks

DNAm can capture a lot of
alarm clock
taking aport cellular/molecular changes.

© photo by Gabriel Menashe | 06/2013
takingapart.com

What are the core signals

(parts) being captured by the
clocks?

Are there shared signals across

aging phenomena and/or
tissues?




Shared DNAm Signals

PCA in 9 Datasets
Whole blood
Adult Brain
Developmental Brain
Dermis
Epidermis

DNA Senescence
Methylation IPSC/Reprogramming
@ Tumor/Normal
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PCA in 9 Datasets
Whole blood
Adult Brain
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Shared DNAm Signals

10 of the 90 PCs
had consistent

U age and/or aging-
DNA outcome
Methylation @ associations
across all 9

O . datasets
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PC1.Epidermis PC1.Epidermis

PC1.Epidermis
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Conclusions

Does biological aging in a tissue predispose 1t to tumorigenesis?

* Aging/Cancer: probability with time vs. causal driver

Preliminary Evidence for Aging = Cancer

1.

= ®

One can estimate “aging” In various tissues using DNAm.
For most clocks, tissues show different rates of aging.
DNAmAge can differentiate tumor versus normal tissue (acceleration in cancer).

DNAmAge can differentiate normal breast tissue in women with history of breast
cancer versus controls.

DNAm patterns in cancer apply to other tissues.
1. Correlate with age in blood, brain, skin, colon
2. Accelerated in skin exposed to sun

3. Accelerated 1n senescent cells (oncogene induced and replicative)
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