Index

A

accuracy, 82, 82f
action, 7, 77–79, 82, 96
 case study, 85
 collective, 152–153
 in VSAL model, 65, 66f, 67, 95
action planning
 in concept mapping, 102–103
 for research utilization, 89, 91–92, 91f
active agents, 77–78
adaptation
 of collective vision, 70
 in loosely coupled systems, 75
 in planning, 71
adaptive agents, 45
adaptive organizations, 62, 73–74
administrative work, 52
adolescents
 smoking prevalence among, 15–16
 in system dynamics models, 126, 127f, 128–129
advertising, tobacco industry, 13, 16–17, 232
 in causal maps, 119
 f
 antitobacco constituencies, in causal maps, 121, 121f
appreciative inquiry summit methodology, 73
approval process, streamlining of, 53
architecture workspace, 205
assessment
 needs, 71
 participatory methods for, 50
ASSIST project. See American Stop Smoking Intervention Study for Cancer Prevention (ASSIST)
attractor, 46
audience, for knowledge translation, 191
autonomy, networks and, 157
autopoiesis, 46
awareness of health risks, in causal maps, 120–122, 120f–121f

Agency for Healthcare Research and Quality, 200
agenda setting, 50, 194
agent(s)
 active, 77–78
 adaptive, 45
 in learning organizations, 79
 and missions, 77–78
 network models based on, 179
 participatory, 77–78
agent-centered principle, 68–69
alignment, 116
Amazon.com, 239
American Cancer Society (ACS), 174, 200–201
American College of Surgeons Commission on Cancer, 200
American Legacy Foundation, 27, 169
American Medical Association, 24

American Stop Smoking Intervention Study for Cancer Prevention (ASSIST), 17, 22–24, 228–229, 233–234, 251
 models, 23, 23f–24f
 monograph on, 245–246
 strength of tobacco control measure, 48, 94–95, 118, 229, 242, 245–246
analysis
 consensus, 102
 cultural, 43–44
 data, 99–100, 167–168
 network (See network analysis)
 in systems approaches, 230–231, 231f
antitobacco constituencies, in causal maps, 121, 121f

Battelle Centers for Public Health Research and Evaluation, 92, 253
behavior
 determined by structure, 116
 models of, 45
 network, 8, 152–154, 181
 organizational, 63, 188
 as system, 111–113, 116
 tobacco use (See smoking behavior)
behavioral management, 63
Behavioral Risk Factor Surveillance System, 201
best practice. See evidence-based practice
Best Practices for Comprehensive Tobacco Control Programs (CDC), 169
“better before worse” scenario, 115–116

Note: Page numbers with t indicate tables; page numbers with f indicate figures.
Index

betweenness centrality, 150–151, 172, 174
boids, 45
Boys and Girls Clubs (B&G Clubs), 172
brainstorming, 71
in concept mapping, 98
overlap with data collection, 230–231
in tobacco control systems, 116
broker relationships, 150
buffering, 75
building blocks, in complex adaptive systems, 45
bureaucratic paperwork, 52
business case, in knowledge management, 194

C
Campaign for Tobacco-Free Kids, 27, 199
Cancer Biomedical Informatics Grid (caBIG), 198, 200, 204–205, 207
cancer control
knowledge resources, 199–206
research utilization in, 87–92, 95
Cancer Control Plan, Link, Act, Network with Evidence-based Tools (PLANET), 186, 198–203, 229
knowledge management strategy, 209, 210f, 237, 242
Cancer Information Service (CIS), 161, 201
Cancer Intervention and Surveillance Modeling Network (CISNET), 198, 202–203
cancer research tools, integrative, 204
capacity building
knowledge management, 195, 241–242, 244
network, 160, 177
systems thinking, 6, 241, 244
Capra, F., 43
CAS. See complex adaptive systems (CAS)
CATWOE, 43–44
causal maps, development of, 118–125, 119f–125f
causal model, 110–111, 115, 141, 231–232
development of, 118–125, 119f–125f
CBOs. See community-based organizations (CBOs)
CBPR. See community-based participatory research (CBPR)
CDCynergy, 203
cellular automata, 45–46
Center for Substance Abuse Prevention, 117
Center for the Advance of Health, 87
Centers for Disease Control and Prevention (CDC)
evaluation framework, 81–82, 82f
guidelines, 55, 169, 186, 201, 252, 267
IMPACT program, 24, 251
knowledge management initiatives, 199, 211
research citations, 186
syndemics initiative, 39
system dynamics model validation, 131–132, 132f
tobacco control initiatives, 24, 201, 242
tracking systems, 229, 242
transdisciplinary efforts, 27, 235–236
centers of excellence, creation of, 243
centrality of networks, 150–151, 172, 174
centralization index, 172, 174
chaos theory, 46, 48, 113, 187, 232
Checkland, Peter, 43–44, 112–113, 226, 252
Chief Executive Office Roundtable on Cancer, 27
children
smoking prevalence among, 15–16
in system dynamics models, 126, 127f, 128–129
CHP (Consumer Health Profiles), 199, 203
Chronic Disease Directors Association, 169
cigarettes
design of, 14–15
distribution of, 16–17
history of, 16–17
CIS (Cancer Information Service), 161, 201
CISNET (Cancer Intervention and Surveillance Modeling Network), 198, 202–203
classical management theory, 63–65, 65f
clean indoor air laws, 20
client referrals, 164, 174–175, 174f
Clinical Guide to Tobacco Use Counseling, 201
Clinical Practice Guideline on Tobacco Cessation, 201
clinical trial management systems, 204
cliqués, 150–152
closeness centrality, 150–151
cluster rating map, 100
examples of, 88–89, 90f, 92–93, 93f, 101f
interpretation of, 101
for tobacco knowledge base, 212, 212f
Cochrane Collaboration, 252
cognitive maps, 72
collaboration
among stakeholder groups, 54, 62, 148, 240
in collective vision, 71
in community-based participatory research, 80
in concept mapping, 83–95
facilitation of, 54, 156
knowledge base for, 189
multiple levels of, 154
navigating, 75
in networks, 74, 158
promotion of, 28–29
transdisciplinary (See transdisciplinary approach) trust in, 80
collective action theories, 152–153
collective learning, 78
collective vision, 70–73, 84/6 building, 86, 235
link between mission and, 77–79, 82–83, 95
command-and-control structures, 62, 64–65 alternatives to, 73–74 versus collaboration, 28–29 versus loosely coupled systems, 75
COMMIT (Community Intervention Trial for Smoking Cessation), 22, 228, 233, 251
commitment, to networks, 154–155, 157–158 Common Data Elements, 204–205
communication
in networks, 153, 175 of positive outcomes, 52 between researchers, 53
communities of practice, in knowledge management, 195
community-based organizations (CBOs), 76–77
community-based participatory research (CBPR), 80, 236
community building, 78
Community-Campus Partnership for Health, 245
Community Intervention Trial for Smoking Cessation (COMMIT), 22, 228, 233, 251
community-level participation, 244–245
compensation, for system changes, 115
competency development, 75, 271
competition
among public health agencies, 124–125 in networks, 157, 206 for scarce resources, 52
critical mass, 229
critical systems thinking, 113

Crossing the Quality Chasm: A New Health System for the 21st Century (IOM), 232
cross-sectional studies, of networks, 165

Cullman, Joseph III, 17
cultural analysis, 43–44

Current Citations (CDC), 186
Current Population Survey Tobacco Use Supplement, 201
curriculum, systems theory, 244, 272
cybernetic loop, 114–115

data analysis
in concept mapping, 99–100
in network analysis, 167–168
database technology
dynamic, 239 in knowledge management, 196–197
data collection
for concept mapping, 97–100
for network analysis, 160, 165–171
overlap with brainstorming, 230–231
Index
decentralized networks, 151
decision making, in networks, 157–158
dedicated network alliance function, 155
degree centrality, 150–151
delays, in causal maps, 119
Delphi technique, 71
demographic change, preparation for, 241
density, network, 151, 175, 178
design, network, 179–180
diagnosis, network, 176–177
diagrams, causal loop, 118–125, 119f–125f
directories, network, 201
discovery, network, 176
dissipative structure
of collective vision, 70
in complex adaptive systems, 46
distribution, of collective vision, 70
diversity, in complex adaptive systems, 44
duplication of effort, avoiding, 54, 206, 240
dyads, 149–150, 153
dynamic database principle, 239
evaluation function
in traditional model, 64, 79
in VSAL model, 67, 69, 79, 84f
evidence-based practice, 252
attitude of user toward, 80
courage of, 54
knowledge base for, 189, 201
evidence-based priorities, setting of, 28
evolution
concept of, 73
of management theory, 63–65, 70, 79
of networks, 153–154, 165, 178
of public health, 12–13, 39, 142, 226
of systems, 46, 113
of systems thinking, 273
of tobacco control, 12–13, 30, 39, 133, 142, 227–228, 228f, 233–234, 250, 250f, 252
exchange theories, 152
explicit knowledge, 188, 221, 227
shift from tacit knowledge to, 193, 207, 214
exploitation, network, 155
exploration, network, 155
E
ecological context, of knowledge translation, 191, 217
ecological thinking, 43, 44f, 226, 235–236, 238–239, 245
edges, 46
emergence, in complex adaptive systems, 46
empowerment
evaluation, 80
participants, 116
engagement, of stakeholder groups, 116
environmental factors
affecting tobacco control, 13, 19–22, 175, 232, 236–237
knowledge translation and, 191
Environmental Public Health Indicators (CDC), 229
environmental scanning, 178, 231, 238
evaluation
dynamic databases for, 239
empowerment, 80
fostering, 239–240
knowledge base for, 201–202
participatory, 79–82, 82f, 226
system models for, 81–82, 82f
facilitation
of collective vision, 71–73
in concept-mapping interpretation, 101
facilitative leadership, 77–78, 84f
FCTC (Framework Convention for Tobacco Control), 29
feasibility, 82, 82f
Federal Cigarette Labeling and Advertising Act, 133
Federal Trade Commission, 14–15
feedback, definition of, 45
feedback loops, in system dynamics, 110, 114–115, 114f, 132–133, 133f, 141–142, 226
filters, 14
financial climate, for state tobacco control programs, 171–172, 172f, 173f
financial infrastructure, for knowledge management, 196, 209
Finland, North Karelia Project in, 21
“fishing net” approach, 156
flocking model, 45
flows
in causal maps, 119, 131, 142, 231
in complex adaptive systems, 44
focused goals, 269–273
focused integration, 154, 180
focus groups, 71
follow-up studies, in network analysis, 167
formal relationships, network, 163–164
Forrester, Jay, 111–113
fractals, 46
fragmentation, network, 151
Framework Convention for Tobacco Control (FCTC), 29, 161
funding
ISIS, 252–253
for tobacco control
in causal maps, 121, 121f, 123–124, 124f, 135–136, 136f
policy makers and, 53–54
practitioner services and, 52
state programs and, 169, 175, 175f
streamlining of, 53
future-search conferences, 72

generalized systems theory, 40
geographic dispersion, problems related to, 156
Genentech, 26
General System Theory: Foundations, Development, Applications (von Bertalanffy), 40
Generation Step, in concept mapping, 97–98
genetic basis, for smoking behavior, 16
geography, 27
geographic display, problems related to, 156
Geoffrey West, 74
Global Links program, 237
Global Tobacco Research Network (GTRN), 161–162, 237, 253
network analysis of, 160–169, 181
goals
focused, 269–273
ISIS, 48f, 54–55, 226, 254, 256
knowledge management, 48f, 216
network, 48f, 155, 160
purposeful, 73
setting of, 29
system dynamics, 84f, 114–115
tobacco control, 12
governance
network, 151, 154, 178, 180
of self-managed groups, 76
government, willingness to take action, in causal maps, 123, 123f
government agencies, collaboration among, 27
government awareness, of health risks, in causal maps, 121f, 122
government health warnings, 133
government intervention sector, in system dynamics models, 118, 140, 140f
government legislation, 20, 118, 133
in causal maps, 123–124, 124f
government sector, in system dynamics models, 130, 130f, 139–141, 140f, 144f
go-zone plots, example of, 89, 91, 91f, 102–103, 103f
group modeling, 116
groupware, 196
GTRN. See Global Tobacco Research Network (GTRN)
Guidance for Comprehensive Cancer Control Planning (CDC), 267
Guide to Clinical Preventive Services, 55
Guide to Community Preventive Services, 55, 186, 201, 252

government agencies, collaboration among, 27
government awareness, of health risks, in causal maps, 121f, 122
government health warnings, 133
government intervention sector, in system dynamics models, 118, 140, 140f
government legislation, 20, 118, 133
in causal maps, 123–124, 124f
government sector, in system dynamics models, 130, 130f, 139–141, 140f, 144f
go-zone plots, example of, 89, 91, 91f, 102–103, 103f
group modeling, 116
groupware, 196
GTRN. See Global Tobacco Research Network (GTRN)
Guidance for Comprehensive Cancer Control Planning (CDC), 267
Guide to Clinical Preventive Services, 55
Guide to Community Preventive Services, 55, 186, 201, 252

government agencies, collaboration among, 27
government awareness, of health risks, in causal maps, 121f, 122
government health warnings, 133
government intervention sector, in system dynamics models, 118, 140, 140f
government legislation, 20, 118, 133
in causal maps, 123–124, 124f
government sector, in system dynamics models, 130, 130f, 139–141, 140f, 144f
go-zone plots, example of, 89, 91, 91f, 102–103, 103f
group modeling, 116
groupware, 196
GTRN. See Global Tobacco Research Network (GTRN)
Guidance for Comprehensive Cancer Control Planning (CDC), 267
Guide to Clinical Preventive Services, 55
Guide to Community Preventive Services, 55, 186, 201, 252

government agencies, collaboration among, 27
government awareness, of health risks, in causal maps, 121f, 122
government health warnings, 133
government intervention sector, in system dynamics models, 118, 140, 140f
government legislation, 20, 118, 133
in causal maps, 123–124, 124f
government sector, in system dynamics models, 130, 130f, 139–141, 140f, 144f
go-zone plots, example of, 89, 91, 91f, 102–103, 103f
group modeling, 116
groupware, 196
GTRN. See Global Tobacco Research Network (GTRN)
Guidance for Comprehensive Cancer Control Planning (CDC), 267
Guide to Clinical Preventive Services, 55
Guide to Community Preventive Services, 55, 186, 201, 252

government agencies, collaboration among, 27
government awareness, of health risks, in causal maps, 121f, 122
government health warnings, 133
government intervention sector, in system dynamics models, 118, 140, 140f
government legislation, 20, 118, 133
in causal maps, 123–124, 124f
government sector, in system dynamics models, 130, 130f, 139–141, 140f, 144f
go-zone plots, example of, 89, 91, 91f, 102–103, 103f
group modeling, 116
groupware, 196
GTRN. See Global Tobacco Research Network (GTRN)
Guidance for Comprehensive Cancer Control Planning (CDC), 267
Guide to Clinical Preventive Services, 55
Guide to Community Preventive Services, 55, 186, 201, 252
Indiana, tobacco control program in, 171–175, 172f, 173f, 175f–176f
Indiana Tobacco Prevention and Cessation Agency (ITPC), 172
individual-level network theories, 149–150
Industrial Revolution, management theory and, 65
informal relationships
 client referrals and, 174–175, 174f
 network, 164
information
 versus knowledge, 186–187
 shared, 164
information dissemination, 28, 53, 186, 252
 and attitude of user, 80
 network efficiency for, 178
 policy makers and, 54
 in system dynamics models, 127, 127f, 129, 135–137, 136f–137f, 144f
information infrastructure, 196, 209–210, 242
Initial Outcomes Index (ASSIST), 242
Initiative on the Study and Implementation of Systems project. See ISIS (Initiative on the Study and Implementation of Systems) project
Initiatives to Mobilize for the Prevention and Control of Tobacco Use (IMPACT), 24, 251
Inquiring Knowledge Networks On the Web system, 170
Institute of Medicine
 Crossing the Quality Chasm: A New Health System for the 21st Century, 232
 2001 report, 87
institutional-community relations, 244–245
integration, focused, 154, 180
integration and implementation sciences, 254, 272
 framework of, 48–49, 49f
integrative cancer research tools, 204
integrative management theory, 63
interaction guidelines, for power issues, 76–77
 interfaces, focus on, 75
internal models, in complex adaptive systems, 44–45
interorganizational ties, 152
interpretation step, in concept mapping, 100–101
intervention, participatory methods for, 50
interviews, for network analysis, 167, 169
in vivo imaging, 204
involvement, in network relationships, 154
ISIS (Initiative on the Study and Implementation of Systems) project
 case studies, 47–50
 common methodologies, 230–231, 230f
conclusions, 255–256
 chapter, 6–9
 crosscutting, 243–245
 general, 5–6, 29–30, 231–232
 specific, 234–245
 as framework for public health issues, 5, 39
 funding for, 252–253
 future steps for, 274–275
 goals of, 48f, 54–55, 226, 254, 256
 history of, 249–256
 implementation framework, 259–275, 266f
 key facets of, 26, 48f
 knowledge management review, 242
 lessons from, 25–29
 monograph framework, 3–5, 254–255
 network analysis in, 170–171
 participants in, 251, 253–254, 256
 policy makers and, 53–54
 practitioners and, 51–52
 purpose of, 2, 26, 38–39, 55, 227
 researchers and, 52–53
 summit meetings, 253–255
 synthesis of, 227–231
 system dynamics in, 116–133, 141–142
 vision of, 245, 260
issue exploration, 50
ITPC. See Indiana Tobacco Prevention and Cessation Agency (ITPC)

J

Johns Hopkins Bloomberg School of Public Health, 92, 162
journals, research published in, 52–53, 136, 186, 236

K

key informants, in network analysis, 166, 168–169
KMT. See knowledge management and translation (KMT)
knowledge
 definition of, 221
 explicit, 188, 221, 227
 shift from tacit to, 193, 207, 214
 versus information, 186–187
organization of, 190, 192–193
tacit, 188, 193, 221, 227
types of, 190, 216, 221
knowledge architects, 195
knowledge base. See tobacco control knowledge base.
knowledge brokers/managers, 195
knowledge champions, 194–195
knowledge conversion, 221
knowledge development, 196
knowledge development tools, 196
knowledge management and translation (KMT), 8–9, 56, 141–142, 185–222, 226–227
benefits of, 189, 216
capacity building for, 195, 241–242, 244
case studies, 48f, 197–216
current directions in, 232–233, 233f
definition of, 187, 221–222
elements of, 187, 221–222
examples of, 228, 229f
formal methodology, 186
four Ps of, 194–196, 195f, 207–208, 214, 218–220
framework for, 188–191, 189f, 217, 222, 222f
conceptual, 189–194, 190f, 192f
strategic, 194–197, 195f
goals of, 48f, 216
integration of, 192–194, 193f, 216
ISIS conclusions on, 241–243
key factors in, 188
overlap with other approaches, 230–231, 230f
project types, 188
resources for, 186
role of, 187
social context of, 191, 217
strategy maps, 197, 198f, 199f, 209, 210f, 210f–211f
for infrastructure, 197, 198f, 199f, 208–209, 218–220
terminology, 221–222
knowledge map, systems-level, 207, 207f, 219–220
knowledge navigation/access tools, 196
knowledge networks, 222
knowledge-outcome map, 220
knowledge production, 190, 192
knowledge refinement, 190–191, 193
knowledge repositories, 155, 196
knowledge resources
tobacco control, 199–206
value of, 196
knowledge transfer, 56, 141–142
case studies, 48f
facilitation of, 156–157
goals of, 48f
two-way, framework for, 268–269, 268f
knowledge-translation networks (KTNs), 236, 242–243
knowledge use, 190, 193

L
laboratories, virtual, 235
ladder graph, for pattern matching, 102, 102f
large group interventions (LGIs), 77–78
large-scale change, framework for, 268–269, 268f
large-scale interactive process, 72
Latino Agencies (Oklahoma), 174
laws
clean indoor air, 20
tobacco control, 118, 133
in causal maps, 123–124, 124f
leader–follower principle, 68–69
leadership
collective vision and, 70–71
facilitative, 77–78, 84f
fostering, 244
in knowledge management, 194–195
of loosely coupled systems, 75
participation of, 271, 271f
self-organization and, 73–74
in systems approach, 3f, 64, 68
leadership program, creation of, 237
leading function
in traditional model, 64, 65f, 68
in VSAL model, 69
learning, 7, 79–83, 96
case study, 85
collective, 78
definition of, 79
enhancement of, 156–157, 235
team, 43
in traditional model, 79
in VSAL model, 65, 66f, 67, 69, 84f, 95
learning organizations, 113, 226
development of, 42–43, 79, 235–236
legitimacy, network, 154–155
letters of support, for network analysis, 167
LGIs. See large group interventions (LGIs)
lifestyle clusters, 203
linkages, among network members, 154
local efforts, linking with, 244–245
logic models, 72, 81, 92, 95–96, 229
longitudinal studies, of networks, 165–166, 175
long-term development, participatory methods for, 50–51
loop(s), in causal maps, 119
loop model, causal, 118–125
loosely coupled system, 74–76
loyalty conflicts, networks and, 157–158

machines, organizations as, 64
Making Health Communications Programs Work: A Planner’s Guide (NCI), 203
management
 basic process of, 64, 65
 of networks, 158
management functions
 in traditional model, 64, 65, 67–68
 in VSAL model, 67–68
management science, 63
management theory
 applied to tobacco control initiatives, 68, 68f
 classical, 63–65, 65f
 evolution of, 63–65, 70, 79
 humanistic, 63
 integrative, 63
 phases of, 63
 quantitative, 63
 systems approach to (See systems organizing)
 traditional, 62–65, 65f
 visual, 71–72
map(s)
 causal, development of, 118–125, 119f–125f
 cluster rating (See cluster rating map)
 cognitive, 72
 knowledge, systems-level, 207, 207f, 219–220
 knowledge management, 72, 197, 198f, 199f,
 207–209, 210f, 210–211f, 218–220
 mind, 71–72
 outcome, 72, 220
 4P-KMT, 197, 198f, 199f, 207–208
 planning, 71–72, 83 (See also concept mapping)
marketing, tobacco, 13, 16–17, 232
 in causal maps, 119f, 120
Massachusetts Institute of Technology, 117
Master Settlement Agreement (MSA), 18, 171, 232
matrix approach
 to network analysis, 160
 to tobacco control, 23, 23f
MDS. See multidimensional scaling (MDS)
mental models, 42, 116, 194
Michigan, tobacco control program in, 171–175, 172f, 173f
mind maps, 71–72
Minnesota Heart Health Program, 21
mission
 establishment of, 77
 link between vision and, 77–79, 82–83, 95
Mississippi, tobacco control program in, 171–175, 172f, 173f
Missouri, tobacco control program in, 171–175, 172f
mobilization, network, 155
model(s)
 behavior, 45
 causal, 110–111, 115, 141, 231–232
 development of, 118–125, 119f–125f
 cellular automata, 45–46
 conference, 72
 evaluation, 81–82, 82f
 group, 116
 internal, 44–45
 logic, 72, 81, 92, 95–96, 229
 mental, 42, 116, 194
 network, 179
 participatory intervention, 80
 planning, 71
 system dynamics (See system dynamics models)
 system knowledge, 4
 systems organizing, 65–83, 66f
 visual, 71–72
 VSAL, 65, 66f, 67
motivation, for knowledge translation, 191
multidimensional scaling (MDS), 97
multidisciplinary approach. See transdisciplinary approach
multiple needs, addressing, 156
multiplexity, of networks, 150, 154
multivariate analysis, 230
 of tobacco control, 23, 24f
 of tobacco knowledge base, 212

N
National Blueprint for Adult Tobacco-Use Cessation, 251
National Cancer Data Standards Repository (NCI), 205
National Cancer Institute (NCI), 200, 228. See also specific NCI project
 Cancer Information Service, 161, 201
 Consumer Health Profiles, 199, 203
knowledge management infrastructure, 206–209, 217, 242
knowledge management initiatives, 200–206, 217, 221–222
National Cancer Data Standards Repository, 205
research funding by, 27–28
research utilization initiative, 87
Smoking, Tobacco, and Cancer Program, 22
Smoking and Tobacco Control Monographs, 20, 234, 245–246
systems dynamics simulations, 117
Tobacco Control Research Branch, 251
transdisciplinary efforts, 27
National Institute on Drug Abuse, 27
National Institutes of Health (NIH), Roadmap Initiative, 27, 235
National Program of Cancer Registries, 201
National Tobacco Control Program (CDC), 24
needs assessment, 71, 238
network(s), 4, 6, 8, 226–227
agent-based simulations of, 179
benefits of, 156–157
capacity building, 160, 177
centrality of, 150–151, 172, 174
creation of, 6, 243, 270
cross-organizational cooperation in, 62
definition of, 2, 149
delineation of, 170
design of, 179–180, 270
diagnosis, 176–177
discovery, 176
diagnostic, 154–155
evolution of, 153–154, 165, 178
examples of, 228, 229f, 264–265
goals of, 155, 160
governance of, 151, 154, 178, 180
horizontal, 164–165
ISIS conclusions on, 240–241
knowledge, 222
knowledge base for, 189
location of, 153, 164–165
nodes of, 161, 172, 174
shortcomings of, 157–158
small-world, 149, 155
“star,” 155
systems organizing structure and, 74, 141
tobacco control, research on, 165–169
unique properties of, 151
value of, 148–149, 155–159
vertical, 164
network alliance function, dedicated, 155
network analysis, 8, 56, 147–181
application of, 159–160
benefits of, 159–160, 180–181
case studies, 48t, 157, 169–180
comparative, 180
current directions in, 232–233, 233f
data collection for, 160, 165–171
definition of, 159
goals of, 48t
guidelines for, 160, 181
information needed for, 161–165
for ISIS, 170–171
ISIS conclusions on, 240–241
key informants in, 166, 168–169
levels of, 149–152
network selection for, 166, 168
organization identification for, 161–162
overlap with other approaches, 230–231, 230f
quantitative, 165–166
relationship identification for, 163–164
services identification for, 162–163, 166, 168
streamlining, 168
in tobacco control
case study, 169–180
data collection methods for, 160–169
translation into practice, 175–180
Web-based environment for, 170
network applications, in public health, 8
network attributes, as measure of tobacco control efforts, 8
network behavior, theories of, 8, 152–154, 181
network bounding, 161
network development, in knowledge management, 196
network directories, 201
network leaders, data collection from, 166
network organizations, 74
network relationships
client referrals and, 174–175, 174f
institutionalized, 180
strength of, 154, 270
type and frequency of, 163–164, 178, 180
weak, 168
network theory, 46
individual-level, 149–150
overview of, 148–154
New Citations, 186
“new sciences,” 40–41
New York State
 tobacco control program in, 171–175, 172f
 welfare reform study, 115
nicotine, “free-base” form of, 15
nicotine addiction, potential for, 15
nicotine delivery
 efficacy of, 14–15
 measurement of, 14–15
nicotine replacement therapy, 13, 28
NIH (National Institutes of Health), Roadmap Initiative, 27, 235
nodes, network, 161, 172, 174
nominal groups approach, 71
nonlinear systems, 44, 46
North American Quitline Consortium, 160–161
 network analysis of, 160–169, 181
North Karelia (Finland) Project, 21

O
obesity control initiative, 85–86
Oklahoma, tobacco control program in, 171–175, 172f, 173f
open-space meetings, 72–73
open systems framework, power issues and, 76
operating system, 65
operational milestones, 75
organization(s)
 adaptive, 62, 73–74
 definition of, 62
 evolution of, 153–154
 identification of, for network analysis, 161–162
 learning, 113, 226
 development of, 42–43, 79, 235–236
as machines, 64
“network,” 74
 networks of, 62, 152
 as organisms, 73, 78
 purposeful, 62, 73–74
organizational behavior, 63, 188
organizational change. See also system dynamics
 approaches to, 78
 theories of, 153–154
organization infrastructure, for knowledge management, 196, 208
organizing function
in traditional model, 64, 65f, 68
in VSAL model, 69, 84f
outcome maps, 72
out-degree centrality, 150–151

P
parameters, estimation of, 116, 132–133
participants
 empowerment of, 116
 ISIS, 251, 253–254, 256
 in knowledge management, 194–195, 195f, 208
 network, data collection from, 167
 substitution of, 75
participative work redesign, 72
participatory action research, 78–80, 234
participatory agents, 77–78
participatory evaluation, 79–82, 82f, 226
participatory intervention model, 80
participatory methods, 47, 50–51, 84f, 226
 key elements of, 50
 of needs assessment, 238
 for planning, 72–73
 structured process for, 77
 types of, 50
 value of, 50–51
participatory research
 community-based, 80, 236
 power balance in, 76
passive smoking, 18, 20
pathology tools, 204
pattern matching, 102
 example of, 88–89, 90f, 102, 102f
 for tobacco knowledge base, 214, 215f
Pawtucket Heart Health Program, 21
Pennsylvania, tobacco control program in, 171–175, 172f
people. See also participants
 in knowledge management, 194–195, 195f, 208
 per capita spending, on tobacco control, 171
 persistence, 75
personal mastery, 42
Philip Morris, 17–20, 29
physical proximity, networks and, 153, 164–165
Pink Book, 203
4P-KMT map, 197, 198f, 199f, 207–208
PLANET project, 186, 198–203, 229
 knowledge management strategy, 209, 210f, 237, 242
planning
 dynamic databases for, 239
knowledge base for, 201–202
map-based approaches to, 71–72
model of, 71
participatory methods for, 72–73
planning function
 collective vision and, 71
 in traditional model, 64, 65f, 68
 in VSAL model, 68–69, 84f
policy makers, participation of, 51, 53–54, 262–263
policy resistance, 115–116
policy simulation, 117
political climate, for state tobacco control
 programs, 171–172, 172f, 173f
population-level efforts, at tobacco control,
 20–25, 30, 39
population science special interest group, 205
population surveillance systems, development
 of, 28
power, structure and, 76–77
practice domain, in systems organizing model,
 67, 69
practitioners
 participation of, 3f, 51–52, 261, 271, 271f
 value of networks for, 156–157
PRECEDE/PROCEED framework, 234
prevention, focus on, 28
process
 in knowledge management, 195–195, 195f, 208
 in systems approaches, 230–231, 231f
product
 in knowledge management, 195f, 196, 208
 tobacco as, 14
program development databases, 239
program evaluation, 169
program evaluation databases, 239
program theory, 81
Project Low-Fat Eating for America Now (LEAN),
 85–86
propriety, 82, 82f
protobacco constituencies, in causal maps,
 122–124, 123f
proximity, networks and, 153, 164–165
public, undecided, in system dynamics model,
 139–140, 139f–140f
public health
 concept mapping in, 72
 evolution of, 12–13, 39, 142, 226
 ISIS project as framework for, 5, 232
 knowledge management framework for, 188–
 191, 189f, 222, 222f
 network analysis in, 155–156, 159
 system dynamics in, 117
 systems approaches to, 47, 55, 235–236,
 241–242, 260
public health agencies
 collaboration among, 27
 competition among, 124–125
public health planning, large-scale framework for,
 268–269, 268f
public opinion, influences on, 130
public opinion sector. See also social norms
 in system dynamics models, 126, 126f, 129–
 134, 131f–134f, 137–141, 138f–140f, 145f
public support, and research utilization, 135–139,
 136f–139f
purpose
 in knowledge management, 194, 195f, 207
 shared, 236, 263
purposeful goals, 73
purposeful organizations, 62, 73–74
puzzle-solving methods, 50

Q
quality assurance, 201
quantitative analysis, of networks, 165–166
quantitative management, 63
questionnaires, for network analysis, 167
quitlines, national network of. See North
 American Quitline Consortium

R
rating task, in concept mapping, 98–99
real-time strategic change, 72
receptor capacity, lack of, 72
reciprocity, network, 158
referrals, client, 164, 174–175, 174f
refutability, 116
relationship(s)
 broker, 150
 exchange, 152
formation of, 78
network (See network relationships)
between public sector and tobacco industry, 18
reputational sampling techniques, 162, 166, 168, 170
research
 collective vision in, 235
effect on smoking prevalence, 139, 139
funding for (See funding, specific topics)
 participatory, 78–80, 234, 236
 relevance of, 206
research approval, streamlining of, 53
research domain, in systems organizing model, 67, 69
researchers
 awareness of health risks, in causal maps, 120–121, 120
 communication between, 53
 participation of, 3, 51–53, 262, 271, 271
 power issues, 76
research fraction, public support and, 135–136, 136, 137–139, 138–139
research sector, in system dynamics models, 127, 127, 129, 135–137, 136–137, 144
research utilization, 13, 27–28, 52–53
 case study, 87–92, 95
 framework for, 268–269, 268
 knowledge base for, 189
 networks and, 240
 power issues with, 76
 in system dynamics models, 135–139, 136–139
trust and, 80
resource(s)
 for effective networks, 155
 optimal use of, 156
resource allocation, 53, 158
resource dependence theories, 152
respect, development of, 76–77
responsibility, cluster rating map of, 93, 94
Richmond, Barry, 42, 111–113
risk factor data, 201
Roadmap for Medical Research Initiative (NIH), 27, 235
Robert Wood Johnson Foundation
 research utilization initiative, 87
SmokeLess States Program, 24, 251
system dynamics simulations, 117
transdisciplinary efforts, 27
Turning Point grant, 157
root definition, 43–44
rules, versus recipes, 74
rural chronic disease, network analysis of, 157

S
Saint Louis University School of Public Health, Center for Tobacco Policy Research, 169
SAMHSA (Substance Abuse and Mental Health Services Administration), 27, 117, 200–201
Santa Fe Institute, 232
satisfaction, with loosely coupled systems, 75
“scale free” networks, 151
scanning, network capacity for, 178, 231, 238
scientific discovery. See research
scientific management, 63
search conference, 73
secondhand smoke, 18, 20
SEER registry, 199, 201–202
self-interest theories, 152
self-management, 76, 78
self-organization, 234, 269
 in complex adaptive systems, 46, 62, 73–74, 83
September 11, 2001, systems view of, 115
service implementation network, 163
shared information, 164
shared purpose, 236, 263
shared situational awareness, 238
shared vision, 42–43
SimSmoke, 117
site visits, for network analysis, 167, 169
skilled personnel, lack of, 241
small-world networks, 149, 155
SmokeLess States Program, 24, 251
smokers, in causal maps, 119–120, 119
smoking
 adverse health outcomes associated with, first report of, 17, 133, 227, 251
 passive, 18, 20
 prevalence of, 15–16, 19, 30
 effect of research on, 139, 139
 models of, 128–129
 social attitudes toward (See social norms)
Smoking and Tobacco Control Monographs (NCI), 20, 234, 245–246
smoking behavior, 15–16, 20. See also tobacco use
genetic basis for, 16
and nicotine yield, 14–15
smoking cessation
biobehavioral aspects of, 15–16, 20
in system dynamics models, 134–135, 135f
smoking initiation
biobehavioral aspects of, 15–16, 20
in system dynamics models, 126, 127f, 128–129, 133–134, 134f
snowball sampling approach. See reputational sampling techniques
social contagion, 153
social context
of knowledge management, 191, 217
of tobacco control, 13, 19–22
social networks, theories of, 152–154
social norms. See also public opinion
in causal maps, 119–120, 119f, 123, 134–135, 134f–135f, 138
influences on, 130
socioeconomic factors, in tobacco use, 15–16
soft systems methodology, 43–44, 112–113
software. See computer software
SoTC (Strength of Tobacco Control) measure, 48, 94–95, 118, 229, 242, 245–246
span gaps, in networks, 150
stability, network, 155, 178
stadium wave, complex behavior of, 45
stakeholder groups, 240. See also network(s)
collaboration among, 27, 54
dialogue among, 78
engagement of, 116
evaluation driven by, 79
identification of, 206
implementation of conclusions with, 271, 271f
inclusion of (See participatory methods)
knowledge management and, 193, 215–216
model of, 3f
similarities among, 263
systems thinking driven by, 113
types of, 51
Stanford Five-City Project, 21
“star” networks, 155
State Cancer Legislative Database, 203
state cancer profiles, 201
state government, tobacco control support from, 171
state health departments, 23, 27
State Tobacco Activities Tracking and Evaluation Systems (CDC), 242
state tobacco control programs
cooperative, 92–95
financial and political climates, 171–172, 172f, 173f
funding changes and, 169, 175, 175f
network analysis of, 169–180
statistical competence, development of, 271
steering behaviors, 45
stocks, in causal maps, 118–119, 131–132, 132f, 142, 231
strategic planning, collective vision and, 71
Strategies to Control Tobacco Use in the United States: A Blueprint for Public Health Action in the 1990’s (NCI), 20, 234
strategy maps, 72
knowledge management, 197, 198f, 199f, 207–209, 210f, 210f–211f, 218–220
SoTC (Strength of Tobacco Control) measure, 48, 94–95, 118, 229, 242, 245–246
structural holes, in networks, 150
structure, 7, 73–77, 83, 96
behavior determined by, 116
case study, 85
do networks, 150
power and conflict issues with, 76–77
in VSAL model, 65, 66f, 67, 95
structured conceptualization. See concept mapping
structuring step, in concept mapping, 98
Substance Abuse and Mental Health Services Administration (SAMHSA), 27, 117, 200–201
superorganisms, complex behavior of, 45
Surgeon General’s Advisory Committee on Smoking and Health, 17, 133
Surgeon General’s report, first, 17, 133, 227, 251
Surveillance, Epidemiology, and End Results (SEER) registry, 199, 201–202
survey instruments, for network analysis, 167
system(s)
behavior as, 111–113, 116
as cause, 114
complex adaptive, 44–45, 113, 226–227, 232, 255
definition of, 14, 39
evolution of, 46, 113
loosely coupled, 74–76
natural formation of, 74
nonlinear, 46
structured development of, 77
tobacco use as, 13–20, 25, 141, 246
system dynamics, 4, 6–8, 56, 109–145, 227
applied to tobacco control, 116–133
brainstorming in, 116
case studies, 48
characteristics of, 116
current directions in, 232–233, 233f
definition of, 2, 41–42
elements of, 228, 229f
feedback loops in, 110, 114–115, 114f, 132–133, 133f, 141–142, 226
goals of, 48
ISIS conclusion on, 237–240
overlap with other approaches, 230–231, 230f
versus systems thinking, 41–42, 111–113
uses of, 110–111

system dynamics models, 4, 8, 72, 110–111, 113, 227
causal mapping for, 118–125, 119f–125f, 231–232
development of, 125–131, 143, 143f–145f
examples of, 115, 117
overlap with other approaches, 231
results of, 133–141
sector component groupings, 117–118, 118f
validation of, 131–132, 132f
value of, 131–132, 141

system networks. See network(s)

systems approaches
benefits of, 5, 7, 232, 238
capacity building for, 6, 241, 244
case studies of, 47–51
common methodologies across, 230–231, 230f
definition of, 14, 39
integration of, 2, 3f, 49, 49f, 55, 228–230, 260–266
framework for, 269, 269f
importance of, 6, 30
large-scale framework for, 268–269, 268f
potential uses of, 5, 7, 38–39, 49–50, 55–56, 226, 246, 271
versus traditional management theory, 65–70, 66f, 83, 95, 226, 234–235
types of, 2, 4, 7

systems concepts, 45–47

systems knowledge, 4, 6
definition of, 2
management of (See knowledge management)
systems methods, definition of, 14, 39

systems organizing, 4, 56, 61–103, 226
case studies, 48f, 83–95
current directions in, 232–233, 233f
definition of, 2
development of, 243
examples of, 228, 229f
goals of, 48
ISIS conclusion on, 234–237
overlap with other approaches, 230–231, 230f
principles of, 7, 65, 66f, 67–68, 84f, 95–96
role of, 5–6

systems theory
curriculum for, 244, 272
development of, 237, 272
evolution of, 47–50, 113
history of, 40

systems thinking, 37–59, 245, 250
barriers to, 236–237, 244
capacity building for, 6, 241, 244
critical, 113
current directions in, 232–233, 233f
definition of, 14, 39–42, 111, 113–114
evolution of, 273
examples of, 41
frameworks for, 41–45, 55–56
implementation framework for, 259–275, 266f
integrated approach to, 47, 49, 49f, 55, 228–230, 260–266
framework for, 269, 269f
in learning organizations, 42–43
misconceptions about, 40
mixed-methods, 237–238
national conference on, 244
participatory methods for, 47, 50–51
skills of, 42, 42f
versus system dynamics, 41–42, 111–113
vision for, 269–273

T
tacit knowledge, 188, 193, 221, 227
shift from explicit to, 193, 207, 214
tagging, in complex adaptive systems, 44
tar yield, 14
taxes
in causal maps, 123–124, 124f
at state level, 171
taxonomy, for knowledge base, 4, 9, 212–214, 213f, 217
team(s)
conflict within, 76–77
self-managing, 76
team approach, to complex issues, 156
team learning, 43
technical management theory, 63
technology, in systems approaches, 230–231, 231f
technology infrastructure, for knowledge management, 196, 208, 242
television interviews, for network analysis, 169
Terry, Luther, 17

thinking
 ecological, 43, 44f, 226, 235–236, 238–239, 245
 effective, principles of, 43
 holistic, 40
 system (See systems thinking)

The “Thinking” in Systems Thinking: Seven Essential Skills (Richmond), 42

3D model, of network development, 176–180
time factors
 in knowledge management, 194
 in network analysis, 158, 165–166, 168–169, 175
tissue banks, 204
tobacco control
 cooperative programs, case study, 92–95
 evolution of, 12–13, 30, 39, 133, 142, 227–228, 228f, 233–234, 250, 250f, 252
 goals of, 12
 history of, 17–18, 133, 227–228
 knowledge management framework for, 188–191, 189f
 case studies, 197–209
 management theory applied to, 68, 68f
 as model for public health, 5, 232
 network analysis in, 160–169
 population-level efforts, 20–25, 30, 39
 societal and environmental factors affecting, 13, 19–22
 stakeholder organizations in, 27
 state-level programs (See state tobacco control programs)
 state of, 4–7, 11–30, 39, 55, 226, 267
 success of, 13
 system dynamics applied to, 116–133
 systems approaches in, 2, 3f (See also ISIS (Initiative on the Study and Implementation of Systems) project)
 application of, 51–54
 beginnings of, 20–25
 examples of, 228, 229f
 implementation of, 273–275
 need for, 12–20, 55
 systems problems in, 25–29, 38–39
tobacco control knowledge base, 199–206
 concept mapping of, 209–217, 212f, 215f, 237
development of, 193
 infrastructure, 206–209, 207f, 242
 missing pieces in, 205–206
taxonomy for, 4, 9, 212–214, 213f, 217
transdisciplinary, 243–244
Tobacco Control Network (CDC), 201
 tobacco control networks
 case study, 169–180
 data collection, 165–169
 tobacco control sector, in system dynamics models, 118
 tobacco grower factors, in causal maps, 119–120, 119f
 tobacco health risk, awareness of, in causal maps, 120–122, 120f–121f
 tobacco industry, 16–20
 advertising by, 13, 16–17, 232
 business coalitions with, 19
 in causal maps, 122–124, 123f
 image of, 19
 lack of intelligence about, 205–206, 216
 public sector relationship with, 18
 response to tobacco control efforts, 12–13, 17–19, 25, 29
 state-level, 171
 tobacco industry sector, in system dynamics models, 118
 Tobacco Information and Prevention Source (CDC), 242
 Tobacco Institute, 18
 tobacco marketing, 13, 16–17, 232
 in causal maps, 119f, 120
 tobacco products, complexity of, 14
 tobacco revenues, in causal maps, 120, 120f, 121, 123
 tobacco settlement funds, 18, 171, 232
 tobacco taxes, in causal maps, 123–124, 124f
 Tobacco Technical Assistance Consortium, 186
 tobacco use. See also smoking behavior
 biobehavioral aspects of, 15–16, 20
 as complex system, 13–20, 25, 141, 246
 societal and environmental factors affecting, 13
 Tobacco Use Prevention Service (TUPS), 174
 tobacco use sector, in system dynamics models, 118, 126, 127f, 133–135, 134f–135f, 143f
 traditional management theory, 62–65, 65f
 functions in, 64, 65f, 67–68
 versus systems approaches, 65–70, 66f, 83, 95, 226, 234–235
 transaction cost economics, 152
 transactive memory systems, 157
 transdisciplinary approach
 facilitation of, 53, 235–236, 240–241
 in ISIS project, 254
to knowledge management, 243–244
need for, 26–27, 39, 148
Transdisciplinary Tobacco Use Research Centers (TTURCs), 27, 166, 234, 236
translational research. See research utilization
trust
in collaboration, 80
development of, 76–77
in networks, 154, 158, 164, 178, 180
between practitioner and client, 52
and research utilization, 80
TUPS. See Tobacco Use Prevention Service (TUPS)
Turning Point grant, 157

U
U.S. Department of Defense, 28–29
U.S. Food and Drug Administration, 28, 118
utility, 82, 82f

V
VENSIM software, 126
vertical networks, 164
vertices, 46
virtual laboratories, 235
vision, 7, 70–73, 82, 96, 235
case study, 85–86
ISIS, 245, 260
link between mission and, 77–79, 82–83, 95
shared, 42–43
for systems thinking, 269–273
in VSAL model, 65, 66f, 67, 84f, 95
visual models, 71–72
vocabularies, 193, 204–205
von Bertalanffy, Ludwig, 40
VSAL model, 65, 66f, 67

W
W. K. Kellogg Foundation, 157
Washington, tobacco control program in,
171–175, 172f
Web-based environment, 241
knowledge resources in, 155, 198–206, 242
for network analysis, 170
for program design, 239
systems approaches in, 243
“Web of Science,” 236
Weissman, George, 17
welfare reform study (New York State), 115
whole-systems perspective, 78
Wikipedia, 187, 239
workspaces, 204–205
World Health Organization, Framework
Convention for Tobacco Control, 29, 161
Wyoming, tobacco control program in, 171–175, 172f