Tobacco Use Supplement to the Current Population Survey User's Workshop June 9, 2009

Tips and Tricks Analyzing TUS-CPS Data

Lloyd Hicks Westat

Talk Outline

- 1. Uses of Standard Errors in Analyzing Data
- 2. Methods to Compute Standard Errors for TUS-CPS estimates
 - Generalized variance functions (SE parameters)
 - BRR replication Fay's method (replicate weights)
- 3. Special Topics for Analysts
 - Change in Race/Ethnicity Questions
 - 2002-03 Overlap Sample
 - Replicate Weights when Data Sets Merged

Uses of Standard Errors

Constructing confidence intervals

- reflects the accuracy of survey estimates
- Hypothesis testing
 - compare estimates between subgroups (within same year)
 - compare estimates across time

Uses of SEs: Confidence Intervals

Formula: $\hat{X} \pm z \times SE(\hat{X})$

- X = estimate
- SE(X) = standard error
- z = confidence interval coefficient (e.g. 1.645 for 90% CI)

Example: 90% CI for males 18+ smokers (20%)

$$20\% \pm 1.645 \times 0.15\% = 20\% \pm 0.25\%$$

= [19.75%, 20.25%]

Uses of SEs: Hypothesis Testing

Formula:

$$\frac{(\hat{X} - \hat{Y})}{SE(\hat{X} - \hat{Y})} > z \Longrightarrow \text{ statistical significance}$$

- X is the estimate for the 1st group
- Y is the estimate for the 2nd group
- SE(X Y) is the standard error of difference
- z = critical value threshold

Hypothesis Testing: Example 1

	Ρ	SE (P)	
group 1	21%	0.15%	
group 2	20%	0.15%	t-stat
diff	1%	0.212%	4.71

Note: difference is statistically significant

(since 4.71 is greater than z where z =1.645 at 90% confidence level)

Hypothesis Testing – Example 2

	Ρ	SE (P)	
group 1	25%	2.50%	
group 2	20%	2.00%	t-stat
diff	5%	3.202%	1.56

Note: difference is not statistically significant

(since 1.56 is less than z where z = 1.645 at 90% confidence level)

Methods of Estimating Standard Errors for TUS-CPS

1. Generalized variance functions (GVF)

- Fast, easy but only approximate
- More practical for large number of survey items
- Requires a and b parameters from source and accuracy statements
- Standard errors formulas for means, totals, percentages and their differences
- Standard errors for complex estimates not possible (e.g. regression)

GVF Example

Standard error for a percentage

$$S_{x,p} = \sqrt{\frac{b}{x}p(100-p)}$$

- p is the estimate of the percentage
- x is the estimate of the base of the percentage
- b is the b parameter obtained from S&A statement

GVF Example

P = percentage of male smokers 18 + = 20.7%X = 101,244,000 b parameter = 1,575 (from S&A table)

$$S_{x,p} = \sqrt{\frac{1,575}{101,244,000}} \times 20.7 \times (100 - 20.7) = 0.16\%$$

Note: Data from 2003 TUS-CPS

Methods of Estimating Standard Errors for TUS-CPS

- 2. Balanced repeated replication (BRR) based on replication weights
 - Replicate weights not on TUS-CPS public use file (available from NCI on request)
 - Requires special software (Sudaan, WesVar, etc.)
 - Provides a more accurate standard error than GVF
 - Standard errors for medians and other quantiles can be problematic

SE Formula for CPS-TUS Using BRR (Fay's Method)

$$SE(\hat{X}) = \sqrt{\frac{4}{R} \sum_{r=1}^{R} (\hat{X}_{(r)} - \hat{X}_{(0)})^2}$$

- X(r) = replicate estimate
- X(0) = full sample estimate
- R = number of replicates

48 for 1992 – 1993 files (1980 decennial based samples) 80 for 1995 – 2003 files (1990 decennial based samples) 160 for 2006 – 2007 files (2000 decennial based samples) 4 = Fay Adjustment Factor (required in Sudaan)

Special Topics for Analysts

- 1. Changes in Race/Ethnicity Data
- 2. 2002/2003 Overlap Sample
- 3. Merging Data Sets

Special Topics 1: Changes to CPS Race/ethnicity data starting in 2003

- Respondents can now select more than one race when answering the survey.
- Asian or Pacific Islander (API) category split:
 - 1. Asian
 - 2. Native Hawaiian or Other Pacific Islander (NHOPI)
- The ethnicity question asked directly whether the respondent was Hispanic
- Ordering of race and ethnicity reversed

Implication of Race/ethnicity Change On TUS-CPS data

- 1. No effect on estimates and trends for entire nation
- 2. Potential impact on estimates and trends by race/ethnicity

Issues when Analyzing TUS-CPS Data By Race/ethnicity

- 1. Can't use race data for post-2003 data in same manner as pre-2003
 - Use single race = "only" category
 - Use "any mention" category
 - Neither group same as pre-2003 group
- 2. Analyzing Trends for single race groups spanning pre-2003 and post-2003
 - NCI developed "race bridge" approach to construct single-race estimates for post-2003 data

TUS-CPS Race bridging approach

- NCI developed model to predict pre-2003 race/ethnicities given post-2003 value (using May 2002 CPS data supplied by Census)
- Paper summarizing the approach on website (http:/riskfactor.cancer.gov/studies/tus-cps/race bridging 071307.pdf).
- Paper summarizing application of approach on TUS-CPS data on website (http://www.fcsm.gov/07papers/Davis.VII-C.pdf)

Special Topic 2: 2002/2003 Overlap Sample (for Limited Longitudinal Analysis)

- Persons in overlap sample (respondents in both)
 - TUS-CPS in Feb. 2002
 - TUSCS-CPS in Feb. 2003
 - Approximately 22,000 in overlap sample
- Responses from both studies can be analyzed as a longitudinal study
- New weights were developed for overlap sample

Development of Overlap Sample Weights

- New weights for the overlap sample developed from 2003 weights
- New weights were derived to reflect 2003 population for gender, race/ethnicity, age, and geography
- Overlap sample weight

$$w^* = r^* w$$

Overlap weights = (adjustment factor) * (2003 weights)

Full sample and replicate weights using same approach

Overlap Sample Weights: Derivation of Adjustment factor

- Choose adjustment factor so that sums of overlap sample weights match sums of 2003 sample weights in groups defined by
 - Census region (4)
 - Gender (2)
 - Race/ethnicity (4)
 - Age categories (19)
- Details in http://riskfactor.cancer.gov/studies/tuscps/TUS-CPS_overlap.pdf

Special Topic 3: Replicate Weights for Merged Data

Within Same Sample Design (Correlated)

- Blend replicates (no new replicate weights needed)
- Still Use Fay Factor of 4

Across Sample Design (Uncorrelated)

- Stack replicates (add replicate weights together)
 - Ex. 80 + 160 = 240
- Adjust replicate weights to account for stacking
- Change Fay Factor from 4 to 16

Talk Recap

- 1. Uses of Standard Errors in Analyzing Data
- 2. Methods to Compute Standard Errors for TUS-CPS estimates
 - Generalized variance functions (SE parameters)
 - BRR replication Fay's method (replicate weights)
- 3. Special Topics for Analysts
 - Change in Race/Ethnicity Questions
 - 2002-03 Overlap Sample
 - Merged Data Sets