Talk Outline

1. Uses of Standard Errors in Analyzing Data
2. Methods to Compute Standard Errors for TUS-CPS estimates
 - Generalized variance functions (SE parameters)
 - BRR replication – Fay’s method (replicate weights)
3. Special Topics for Analysts
 - Change in Race/Ethnicity Questions
 - 2002-03 Overlap Sample
 - Replicate Weights when Data Sets Merged
Uses of Standard Errors

- Constructing confidence intervals
 - reflects the accuracy of survey estimates

- Hypothesis testing
 - compare estimates between subgroups (within same year)
 - compare estimates across time
Uses of SEs: Confidence Intervals

Formula: \(\hat{X} \pm z \times SE(\hat{X}) \)

- \(\hat{X} \) = estimate
- \(SE(\hat{X}) \) = standard error
- \(z \) = confidence interval coefficient (e.g. 1.645 for 90% CI)

Example: 90% CI for males 18+ smokers (20%)

\[
20\% \pm 1.645 \times 0.15\% = 20\% \pm 0.25\% = [19.75\%, 20.25\%]
\]
Uses of SEs: Hypothesis Testing

Formula:

\[
\frac{(\hat{X} - \hat{Y})}{SE(\hat{X} - \hat{Y})} > z \implies \text{statistical significance}
\]

- \(X\) is the estimate for the 1\(^{\text{st}}\) group
- \(Y\) is the estimate for the 2\(^{\text{nd}}\) group
- \(SE(X - Y)\) is the standard error of difference
- \(z = \text{critical value threshold}\)
Hypothesis Testing: Example 1

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>SE (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>group 1</td>
<td>21%</td>
<td>0.15%</td>
</tr>
<tr>
<td>group 2</td>
<td>20%</td>
<td>0.15%</td>
</tr>
<tr>
<td>diff</td>
<td>1%</td>
<td>0.212%</td>
</tr>
</tbody>
</table>

Note: difference is statistically significant
(since 4.71 is greater than z where z = 1.645 at 90% confidence level)
Hypothesis Testing – Example 2

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>SE (P)</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>group 1</td>
<td>25%</td>
<td>2.50%</td>
<td></td>
</tr>
<tr>
<td>group 2</td>
<td>20%</td>
<td>2.00%</td>
<td></td>
</tr>
<tr>
<td>diff</td>
<td>5%</td>
<td>3.202%</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Note: difference is not statistically significant (since 1.56 is less than z where z =1.645 at 90% confidence level)
Methods of Estimating Standard Errors for TUS-CPS

1. Generalized variance functions (GVF)
 - Fast, easy but only approximate
 - More practical for large number of survey items
 - Requires a and b parameters from source and accuracy statements
 - Standard errors formulas for means, totals, percentages and their differences
 - Standard errors for complex estimates not possible (e.g. regression)
Standard error for a percentage

\[S_{x,p} = \sqrt{\frac{b}{x}p(100-p)} \]

- \(p \) is the estimate of the percentage
- \(x \) is the estimate of the base of the percentage
- \(b \) is the \(b \) parameter obtained from S&A statement
GVF Example

\[P = \text{percentage of male smokers 18+} = 20.7\% \]
\[X = 101,244,000 \]
\[b \text{ parameter} = 1,575 \text{ (from S&A table)} \]

\[
S_{x,p} = \sqrt{\frac{1,575}{101,244,000} \times 20.7 \times (100 - 20.7)} = 0.16\%
\]

Note: Data from 2003 TUS-CPS
Methods of Estimating Standard Errors for TUS-CPS

2. Balanced repeated replication (BRR) based on replication weights

- Replicate weights not on TUS-CPS public use file (available from NCI on request)
- Requires special software (Sudaan, WesVar, etc.)
- Provides a more accurate standard error than GVF
- Standard errors for medians and other quantiles can be problematic
SE Formula for CPS-TUS Using BRR (Fay’s Method)

$$SE(\hat{X}) = \sqrt{\frac{4}{R} \sum_{r=1}^{R} (\hat{X}_{(r)} - \hat{X}_{(0)})^2}$$

$X(r)$ = replicate estimate
$X(0)$ = full sample estimate
R = number of replicates

80 for 1995 – 2003 files (1990 decennial based samples)
160 for 2006 – 2007 files (2000 decennial based samples)
4 = Fay Adjustment Factor (required in Sudaan)
Special Topics for Analysts

1. Changes in Race/Ethnicity Data
2. 2002/2003 Overlap Sample
3. Merging Data Sets
Special Topics 1: Changes to CPS Race/ethnicity data starting in 2003

- Respondents can now select more than one race when answering the survey.
- Asian or Pacific Islander (API) category split:
 1. Asian
 2. Native Hawaiian or Other Pacific Islander (NHOPI)
- The ethnicity question asked directly whether the respondent was Hispanic
- Ordering of race and ethnicity reversed
Implication of Race/ethnicity Change
On TUS-CPS data

1. No effect on estimates and trends for entire nation
2. Potential impact on estimates and trends by race/ethnicity
Issues when Analyzing TUS-CPS Data By Race/ethnicity

1. Can’t use race data for post-2003 data in same manner as pre-2003
 - Use single race = “only” category
 - Use “any mention” category
 - Neither group same as pre-2003 group

2. Analyzing Trends for single race groups spanning pre-2003 and post-2003
 - NCI developed “race bridge” approach to construct single-race estimates for post-2003 data
TUS-CPS Race bridging approach

• NCI developed model to predict pre-2003 race/ethnicities given post-2003 value (using May 2002 CPS data supplied by Census)
• Paper summarizing application of approach on TUS-CPS data on website (http://www.fcsm.gov/07papers/Davis.VII-C.pdf)
Special Topic 2: 2002/2003 Overlap Sample (for Limited Longitudinal Analysis)

- Persons in overlap sample (respondents in both)
 - TUS-CPS in Feb. 2002
 - TUSCS-CPS in Feb. 2003
 - Approximately 22,000 in overlap sample
- Responses from both studies can be analyzed as a longitudinal study
- New weights were developed for overlap sample
Development of Overlap Sample Weights

- New weights for the overlap sample developed from 2003 weights
- New weights were derived to reflect 2003 population for gender, race/ethnicity, age, and geography
- Overlap sample weight
 \[w^* = r \times w \]
 Overlap weights = (adjustment factor) * (2003 weights)
- Full sample and replicate weights using same approach
Overlap Sample Weights: Derivation of Adjustment factor

- Choose adjustment factor so that sums of overlap sample weights match sums of 2003 sample weights in groups defined by
 - Census region (4)
 - Gender (2)
 - Race/ethnicity (4)
 - Age categories (19)

Special Topic 3: Replicate Weights for Merged Data

Within Same Sample Design (Correlated)
- Blend replicates (no new replicate weights needed)
- Still Use Fay Factor of 4

Across Sample Design (Uncorrelated)
- Stack replicates (add replicate weights together)
 - Ex. $80 + 160 = 240$
- Adjust replicate weights to account for stacking
- Change Fay Factor from 4 to 16
Talk Recap

1. Uses of Standard Errors in Analyzing Data
2. Methods to Compute Standard Errors for TUS-CPS estimates
 - Generalized variance functions (SE parameters)
 - BRR replication – Fay’s method (replicate weights)
3. Special Topics for Analysts
 - Change in Race/Ethnicity Questions
 - 2002-03 Overlap Sample
 - Merged Data Sets